Активность ренин ангиотензин альдостероновой системы. Ангиотензин-ренин-альдостероновая система: схема, функции и ее роль

Фармакодинамическое действие ингибиторов АПФ связано с блокированием АПФ, превращающего ангиотензин I в ангиотензин II в крови и тканях, что приводит к устранению прессорных и других нейрогуморальных влияний АТII, а также предупреждает инактивации брадикинина, что усиливает вазодилатирующий эффект.

Большинство ингибиторов АПФ являются пролекарствами (кроме каптоприла, лизиноприла), действие которых осуществляется активными метаболитами. Различаются ингибиторы АПФ аффинностью к АПФ, влиянием на тканевые РААС, липофильностью, путями элиминации.

Основной фармакодинамический эффект - гемодинамический, связанный с периферической артериальной и венозной вазодилатацией, которая в отличие от других вазодилататоров не сопровождается увеличением ЧСС ввиду понижения активности САС. Почечные эффекты ингибиторов АПФ связаны с дилатацией артериол клубочков повышением натрийуреза и задержкой калия в результате уменьшения секреции альдостерона.

Гемодинамические эффекты ингибиторов АПФ лежат в основе их гипотензивного действия; у больных с застойной сердечной недостаточностью - в уменьшении дилатации сердца и повышении сердечного выброса.

Ингибиторы АПФ оказывают органопротективное (кардио-, вазо- и нефропротективное) действие; благоприятно влияют на углеводный обмен (уменьшают инсулинорезистентность) и липидный обмен (повышают уровень ЛПВП).

Ингибиторы АПФ применяются для лечения артериальной гипертонии, дисфункции левого желудочка и сердечной недостаточности, используются при остром инфаркте миокарда, сахарном диабете, нефропатиях и протеинурии.

Класс-специфические побочные проявления - кашель, гипотонии первой дозы и ангионевротический отек, азотемия.

Ключевые слова: ангиотензин II, ингибиторы АПФ, гипотензивное действие, органопротективное действие, кардиопротективное действие, нефропротективное действие, фармакодинамика, фармакокинетика, побочные эффекты, лекарственные взаимодействия.

СТРОЕНИЕ И ФУНКЦИИ РЕНИН-АНГИОТЕНЗИНАЛЬДОСТЕРОНОВОЙ СИСТЕМЫ

Ренин-ангиотензин-альдостероновая система (РААС) выполняет важное гуморальное влияние на сердечно-сосудистую систему и участвует в регуляции АД. Центральным звеном РААС является ангиотензин II (АТ11) (схема 1), который обладает мощным прямым вазоконстрикторным действием преимущественно на артерии и опосредованным действием на ЦНС, высвобождением катехоламинов из надпочечников и вызывает увеличение ОПСС, стимулирует секрецию альдостерона и приводит к задержке жидкости и повышению (ОЦК), стимулирует выброс катехоламинов (норадренолина) и других нейрогормонов из симпатических окончаний. Влияние АТ11 на уровень АД осуществляется за счет действия на тонус сосудов, а также посредством структурной перестройки и ремоделирования сердца и сосудов (табл. 6.1). В частности, ATII является также фактором роста (или модулятором роста) для кардиомиоцитов и гладкомышечных клеток сосудов.

Схема 1. Строение ренин-ангиотензин-альдостероновой системы

Функции других форм ангиотензина. Ангиотензин I малозначим в системе РААС, так как быстро превращается в АТП, кроме того, его активность в 100 раз меньше активности АТП. Ангиотензин III действует подобно АТП, но его прессорная активность в 4 раза слабее АТП. Ангиотензин 1-7 образуется вследствие превращения ангиотензина I. По функциям он значительно отличается от АТП: он не вызывает прессорного действия, а наоборот, приводит к снижению АД благодаря секреции АДГ, стимуляции синтеза простагландинов, натрийуреза.

РААС оказывает регулирующее влияние на почечную функцию. АТП вызывает мощный спазм приносящей артериолы и снижение давления в капиллярах клубочка, уменьшение фильтрации в нефроне. В результате снижения фильтрации уменьшается реабсорбция натрия в проксимальном отделе нефрона, что приводит к увеличению концентрации натрия в дистальных канальцах и активации Na-чувствительных рецепторов плотного пятна в нефроне. По меха-

Органы и ткани

Эффекты

Вазоконстрикция (выброс НА, вазопрессина, эндоте- лина-I), инактивация NO, подавление ТАП

Инотропное и хронотропное действие Спазм коронарных артерий

Спазм почечных сосудов (больше эфферентных артериол)

Сокращение и пролиферация мезангиальных клеток Реабсорбция натрия, экскреция калия Снижение секреции ренина

Надпочечники

Секреция альдостерона и адреналина

Головной мозг

Секреция вазопрессина, антидиуретического гормона Активация СНС, стимуляция центра жажды

Тромбоциты

Стимуляция адгезии и агрегации

Воспаление

Активация и миграция макрофагов

Экспрессия факторов адгезии, хемотаксиса и цитоки-

Трофические факторы

Гипертрофия кардиомиоцитов, ГМК сосудов Стимуляция проонкогенов, факторов роста Увеличение синтеза компонентов внеклеточного матрикса и металлопротеиназ

низму обратной связи это сопровождается торможением выделения ренина и увеличением скорости клубочковой фильтрации.

Функционирование РААС связано с альдостероном и посредством механизма обратной связи. Альдостерон - важнейший регулятор объема внеклеточной жидкости и гомеостаза калия. Прямого действия на секрецию ренина и АТП альдостерон не оказывает, но возможно косвенное влияние через задержку натрия в организме. В регуляции секреции альдостерона участвуют АТП и электролиты, причем АТП - стимулирует, а натрий и калий - уменьшают его образование.

Гомеостаз электролитов тесно связан с активностью РААС. Натрий и калий не только влияют на активность ренина, но и изменяют чувствительность тканей к АТП. При этом в регуляции активности

ренина большая роль принадлежит натрию, а в регуляции секреции альдостерона - калий и натрий имеют одинаковые влияния.

Физиологическая активация РААС наблюдается при потере натрия и жидкости, значительном снижении АД, сопровождающемся падением фильтрационного давления в почках, повышении активности симпатической нервной системы, а также под воздействием многих гуморальных агентов (вазопрессина, предсердного натрийуретического гормона, антидиуретического гормона).

Целый ряд сердечно-сосудистых заболеваний может способствовать патологической стимуляции РААС, в частности, при АГ, застойной сердечной недостаточности, остром инфаркте миокарда.

В настоящее время известно, что РАС функционирует не только в плазме (эндокринная функция), но и во многих тканях (головном мозге, сосудистой стенке, сердце, почках, надпочечниках, легких). Эти тканевые системы могут работать независимо от плазменной, на клеточном уровне (паракринная регуляция). Поэтому различают краткосрочные эффекты ATII, обусловленные свободно циркулирующей его фракцией в системном кровотоке, и отсроченные эффекты, регулируемые через тканевые РАС и влияющие на структурно-адаптационные механизмы поражения органов (табл. 6.2).

Таблица 6.2

Разные фракции РААС и их эффекты

Ключевым ферментом РААС является ангиотензин-превращающий фермент (АПФ), он обеспечивает превращение ΑTI в ATII. Основное количество АПФ присутствует в системном кровотоке, обеспечивая образование циркулирующего АТII и краткосрочные геодинамические эффекты. Превращение АТ в ATII в тканях может осуществляться не только с помощью АПФ, но и другими фермен-

тами (химазы, эндопероксиды, катепсин G и др.); считают, что им принадлежит ведущая роль в функционировании тканевых РАС и развитии длительных эффектов моделирования функции и структуры органов-мишеней.

АПФ идентичен ферменту кининазе II, участвующему в деградации брадикинина (схема 1). Брадикинин - мощный вазодилататор, участвующий в регуляции микроциркуляции и ионном транспорте. Брадикинин имеет очень короткий период жизни и присутствует в кровотоке (тканях) в низких концентрациях; поэтому он проявлят свои эффекты как местный гормон (паракринно). Брадикинин способствует увеличению внутриклеточного Са 2 +, являющегося кофактором для NO-синтетазы, участвующей в образовании эндотелийрелаксирующего фактора (оксида азота или NO). Эндотелийрелаксирующий фактор, блокирующий сокращение мускулатуры сосудов и агрегацию тромбоцитов, является также ингибитором митоза и пролиферации гладкой мускулатуры сосудов, что обеспечивает антиатерогенное действие. Брадикинин также стимулирует синтез в эндотелии сосудов ПГЕ2 и ПГI2 (простациклина) - мощных вазодилататоров и тромбоцитарных антиагрегантов.

Таким образом, брадикинин и вся кининовая система являются противодействующей для РААС. Блокирование АПФ потенциально повышает уровень кининов в тканях сердца и сосудистой стенки, что обеспечивает антипролиферативный, антиишемический, антиатерогенный и антиагрегантный эффекты. Кинины способствуют увеличению кровотока, диуреза и натрийуреза без существенного изменения скорости клубочковой фильтрации. ПГ Е2 и ПГI2 также обладают диуретическим и натрийуретическим действием и увеличивают почечный кровоток.

Ключевым ферментом РААС является ангиотензин-превращающий фермент (АПФ), он обеспечивает превращение ATI в ATII, а также участвует в деградации брадикинина.

МЕХАНИЗМ ДЕЙСТВИЯ И ФАРМАКОЛОГИЯ ИНГИБИТОРОВ АПФ

Фармакодинамические эффекты ингибиторов АПФ связаны с блокированием АПФ и уменьшением образования АТШ в крови и тканях,

устранением прессорных и других нейрогуморальных его эффектов. При этом, по механизму обратной связи, может увеличиваться уровень ренина плазмы и АTI, а также транзиторно снижаться уровень альдостерона. Ингибиторы АПФ предупреждают разрушение брадикинина, что дополняет и усиливает их сосудорасширяющий эффект.

Существует множество различных ингибиторов АПФ и несколько важных характеристик, различающих препараты этой группы (табл. 6.3):

1) химическое строение (наличие Sff-группы, карбоксильной группы, фофсорсодержащие);

2) лекарственная активность (drug или prodrug);

3) влияние на тканевые РААС;

4) фармакокинетические свойства (липофильность).

Таблица 6.3

Характеристика ингибиторов АПФ

Препараты

Химическая группа

Лекарственная активность

Влияние на тканевые РААС

Каптоприл

лекарство

Эналаприл

Карбокси-

пролекарство

Беназеприл

Карбокси-

пролекарство

Квинаприл

Карбокси-

пролекарство

Лизиноприл

Карбокси-

лекарство

Моэксиприл

Карбокси-

пролекарство

Периндоприл

Карбокси-

пролекарство

Рамиприл

Карбокси-

пролекарство

Трандолаприл

Карбокси-

пролекарство

Фозиноприл

пролекарство

Цилазаприл

Карбокси-

пролекарство

Характер распределения в тканях (тканевая специфичность) ингибиторов АПФ зависит от степени липофильности, обусловливающей пенетрацию в разные ткани, и от силы связывания с тканевыми АПФ. Относительная сила действия (аффинность) ингибиторов АПФ исследована in vitro. Данные о сравнительной силе действия разных ингибиторов АПФ представлены ниже:

Квинаприлат = Беназеприлат = Трандалоприлат = Цилазаприлат = Рамиприлат = Периндоприлат > Лизиноприл > Эналаприлат > Фозиноприлат > Каптоприл.

Силой связывания с АПФ определяется не только сила действия ингибиторов АПФ, но и их продолжительность действия.

Фармакодинамические эффекты ингибиторов АПФ являются класс-специфическими и связаны с блокированием АПФ и уменьшением образования АТП в крови и тканях при устранении прессорных и других нейрогуморальных его эффектов, а также с предупреждением разрушения брадикинина, что способствует образованию вазодилатирующих факторов (ПГ, NO), дополняет вазодилатирующий эффект.

ФАРМАКОДИНАМИКА ИНГИБИТОРОВ АПФ

Основной фармакодинамический эффект ингибиторов АПФ - гемодинамический, связанный с периферической артериальной и венозной вазодилатацией и развиваюшийся в результате сложных изменений нейрогуморальной регуляции сердечно-сосудистой системы (подавление активности РААС и САС). По механизму действия они принципиально отличаются как от прямых вазодилататоров и антагонистов кальция, действующих непосредственно на сосудистую стенку, так и от вазодилататоров рецепторного действия (α- и β-адреноблокаторов). Они уменьшают ОПСС, увеличивают сердечный выброс и не влияют на частоту сердечных сокращений вследствие устранения стимулирующего действия АТП на САС. Гемодинамический эффект ингибиторов АПФ наблюдается независимо от активности ренина в крови. Вазодилатирующее действие ингибиторов АПФ проявляется улучшением регионального кровотока в органах и тканях мозга, сердца, почек. В ткани почек ингибиторы АПФ оказывают расширяющее действие на эфферентные (выносящие) артериолы клубочков и снижают внутриклубочковую гипертонию. Они вызывают также натрийурез и задержку калия в результате уменьшения секреции альдостерона.

ГЕМОДИНАМИЧЕСКИЕ ЭФФЕКТЫ ИНГИБИТОРОВ АПФ ЛЕЖАТ В ОСНОВЕ ИХ ГИПОТЕНЗИВНОГО ДЕЙСТВИЯ

Гипотензивный эффект обусловлен не только снижением образования АТП, но и предупреждением деградации брадикинина, который потенцирует эндотелийзависимую релаксацию гладкой мускулатуры сосудов, через образование вазодилатирующих простакландинов и эндотелиального релаксирующего фактора (NO).

Для большинства ингибиторов АПФ гипотензивное действие начинается через 1-2 ч, максимальный эффект развивается в среднем через 2-6 ч, продолжительность действия достигает 24 ч (кроме наиболее короткодействующих - каптоприла и эналаприла, действие которых продолжается 6-12 ч) (табл. 6.4). Скорость наступления гемодинамического эффекта ингибиторов прямо влияет на переносимость и выраженность гипотонии «первой дозы».

Таблица 6.4

Продолжительность гипотензивного действия ингибиторов АПФ

Распределение гипотензивного эффекта ингибиторов АПФ во времени не всегда точно зависит от фармакокинетики, при этом не все препараты, даже продолжительного действия, характеризуются высоким индексом Т/p (табл. 6.5).

Таблица 6.5

Отношение T/p ингибиторов АПФ

Ингибиторы АПФ уменьшают высвобождение норадреналина и реактивность сосудистой стенки на вазоконстрикторную симпатическую активацию, что используется у больных ишемической болезнью сердца при остром инфаркте миокарда и угрозе реперфузионных аритмий. У больных с застойной сердечной недостаточностью снижение периферической системной резистентности (постнагрузки), легочной сосудистой резистентности и капиллярного давления (преднагрузки) ведет к снижению дилатации полостей сердца, улучшению диастолического наполнения, повышению сердечного выброса и увеличению толерантности к физической нагрузке. Кроме того, нейрогуморальные эффекты ингибиторов АПФ замедляют ремоделирование сердца и сосудов.

Благодаря блокированию нейрогуморальных эффектов ATII ингибиторы АПФ оказывают выраженное органопротективное действие: кардиопротективное, вазопротективное и нефропротективное; они вызывают целый ряд благоприятных метаболических эффектов, улучшая углеводный и липидный обмен. Потенциальные эффекты ингибиторов АПФ представлены в табл. 6.6.

Ингибиторы АПФ проявляют кардиопротективное действие, вызывая регресс ГЛЖ, препятствуя ремоделированию, ишемическому и реперфузионному повреждению миокарда. Кардиопротективный эффект является класс-специфическим для всех ингибиторов АПФ и обусловлен, с одной стороны, устранением трофического действия АТ11 на миокард, а с другой, модуляцией симпатической активности, так как АТ11 является важным регулятором высвобождения

Таблица 6.6

Фармакодинамические эффекты ингибиторов АПФ

катехоламинов, а ингибирование АТП приводит к снижению симпатического влияния на сердце и сосуды. В осуществлении кардиопротективных эффектов ингибиторов АПФ определенное место принадлежит кининам. Брадикинин и простагландины благодаря антиишемическому действию, дилатации капилляров и увеличению

доставки кислорода миокарду способствуют усилению микроциркуляции, восстановлению метаболизма и насосной функции миокарда на фоне регресса ГЛЖ и в постинфарктном периоде.

Доказана преобладающая роль ингибиторов АПФ в уменьшении ГЛЖ перед другими классами гипотензивных препаратов, причем отсутствует связь между выраженностью гипотензивного эффекта и регрессией ГЛЖ (они могут предотвращать развитие ГЛЖ и миокардиального фиброза даже в отсутствие снижения АД).

Ингибиторы АПФ проявляют вазопротективное действие, отменяя эффекты АТII на АТ 1 -рецепторы сосудов, с одной стороны, и с другой, активируя брадикининовую систему улучшая эндотелиальную функцию и оказывая антипролиферативное действие на гладкую мускулатуру сосудов.

Ингибиторы АПФ обладают антиатерогенным действием, в механизме которого лежат антипролиферативные и антимиграционные эффекты на гладкомышечные клетки сосудов и моноциты, уменьшение образования коллагенового матрикса, антиоксидантное и противовоспалительное действие. Дополняет антиатерогенный эффект потенцирование ингибиторами АПФ эндогенного фибринолиза и антиагрегантное действие (торможение агрегации тромбоцитов); снижение атерогенности плазмы (уменьшение ЛПНП и триглицеридов и повышение ЛПВП); они предупреждают разрыв атеросклеротической бляшки и атеротромбоз. Антиатерогенные свойства в клинических исследованиях показаны для рамиприла, квинаприла.

Ингибиторы АПФ обладают важным нефропротективным эффектом, предотвращая прогрессирование почечной недостаточности и уменьшая протеинурию. Нефропротективный эффект является класс-специфическим и характерен для всех препаратов. Дилатация преимущественно эфферентных артериол почечного клубочка сопровождается снижением интрагломеруллярного фильтрационного давления, фильтрационной фракции и гиперфильтрации, в результате уменьшается протеинурия (преимущественно низкомолекулярных белков) у больных с диабетической и гипертонической нефропатией. Ренальные эффекты, ввиду высокой чувствительности почечных сосудов к вазодилатирующему действию ингибиторов АПФ, проявляются раньше, чем снижение ОПСС и лишь частично опосредованы гипотензивным действием. В механизме антипротеинурического эффекта ингибиторов АПФ лежит противовоспалительное действие на базальную мембрану клубочка и антипролиферативное действие

на мезангиальные клетки клубочка, что уменьшает ее проницаемость для среднемолекулярных и высокомолекулярных белков. Кроме того, ингибиторы АПФ устраняют трофические эффекты ATII, который за счет стимуляции роста мезангиальных клеток, продукции ими коллагена и эпидермального фактора роста почечных канальцев ускоряет развитие нефросклероза.

Установлено, что липофильность ингибиторов АПФ обусловливает влияние на тканевые РАС, и, возможно, органопротективные эффекты (табл. 6.8).

Сравнительная фармакокинетика ингибиторов АПФ представлена в табл. 6.9.

Отличительной фармакокинетической особенностью большинства ингибиторов АПФ (кроме каптоприла и лизиноприла) является

Таблица 6.8

Индекс липофильности активных форм основных ингибиторов АПФ

Примечание. Отрицательное значение указывает на гидрофильность.

выраженный метаболизм в печени, в том числе пресистемный, приводящий к образованию активных метаболитов и сопровождающийся значительной индивидуальной вариабельностью. Такая фармакокинетика делает ингибиторы АПФ похожими на «пролекарства», фармакологическое действие которых после приема внутрь осуществляется благодаря образованию в печени активных метаболитов. В России зарегистрирована парентеральная форма эналаприла - синтетический аналог эналаприлата, который используется для купирования гипертонических кризов.

Максимальная концентрация ингибиторов АПФ достигается в плазме крови через 1-2 ч и влияет на скорость развития гипотонии. Ингибиторы АПФ отличаются высокой степенью связи с белками плазмы (70-90%). Период полувыведения вариабельный: от 3 ч до 24 ч и более, хотя фармакокинетика менее влияет на продоложительность гемодинамического эффекта. Выделяют три фазы ран-

нее быстрое снижение, отражающее стадию распределения (Т 1/2 a); начальная фаза элиминации, отражающая элиминацию несвязанной с тканевыми АПФ фракции (Т 1/2 b); длительная терминальная фаза элиминации, отражающая элиминацию диссоциированной фракции активных метаболитов из комплекса с АПФ, которая может достигать 50 ч (у рамиприла) и определяет интервал дозирования.

Препараты в дальнейшем метаболизируются с образованием глюкуронидов (кроме лизиноприла и цилазаприла). Наибольшее клиническое значение имеют пути элиминации ингибиторов АПФ:

преимущественно почечный (более 60%) - лизиноприл, цилазаприл, эналаприл, квинаприл, периндоприл; билиарный (спираприл, трандолаприл) или смешанный. Билиарная экскреция - важная альтернатива почечной элиминации, особенно при наличии ХПН.

ПОКАЗАНИЯ

Артериальная гипертония (табл. 6.9). Ингибиторы АПФ оказывают гипотензивный эффект практически при всех формах АГ, вне зависимости от активности ренина плазмы. Барорефлекс и другие кардиоваскулярные рефлексы не изменяются, отсутствует ортостатическая гипотония. Этот класс препаратов относят к препаратам 1 ряда в лечении АГ. Монотерапия эффективна у 50% больных с АГ. Помимо гипотензивного действия, ингибиторы АПФ у больных с АГ снижают риск сердечно-сосудистых осложнений (возможно, больше, чем другие гипотензивные препараты). Ингибиторы АПФ являются препаратами выбора при сочетании АГ и сахарного диабета ввиду значимого снижения сердечно-сосудистого риска.

Систолическая дисфункция левого желудочка и хроническая сердечная недостаточность. Ингибиторы АПФ следует назначать всем больным с дисфункцией левого желудочка независимо от присутствия симптомов сердечной недостаточности. Ингибиторы АПФ предупреждают и замедляют развитие ХСН, снижают риск ОИМ и внезапной смерти, уменьшают потребность в госпитализации. Ингибиторы АПФ уменьшают дилатацию левого желудочка и препятствуют ремоделированию миокарда, уменьшают кардиосклероз. Эффективность ингибиторов АПФ усиливается с тяжестью дисфункции левого желудочка.

Острый инфаркт миокарда. Применение ингибиторов АПФ в ранние сроки при остром инфаркте миокарда снижают смертность больных. Особенно эффективны ингибиторы АПФ на фоне АГ, сахарного диабета и пациентов высокого риска.

Сахарный диабет и диабетическая нефропатия. Все ингибиторы АПФ замедляют прогрессированние поражения почек при сахарном диабете I и II типа вне зависимости от уровня АД. Ингибиторы АПФ замедляют прогрессирование ХПН и при других нефропатиях. Длительное применение ингибиторов АПФ сопровождается снижением частоты осложнений сахарного диабета и сердечно-сосудистых

Таблица 6.9

Показания к назначению ингибиторов АПФ

осложнений. Применение ингибиторов АПФ сопровождается меньшей частотой возникновения новых случаев сахарного диабета, чем другие гипотензивные препараты (диуретики, β-адреноблокаторы, антагонисты кальция).

ПРОТИВОПОКАЗАНИЯ

Ингибиторы АПФ противопоказаны у больных с билатеральным стенозом почечных артерий или стенозом в единственной почке, а также после трансплантации почки (риск развития почечной недостаточности); у больных с наличием выраженной почечной недостаточности; гиперкалиемии; при выраженном аортальном стенозе (с нарушением гемодинамики); при ангионевротическом отеке, в том числе и после применения любого из ингибиторов АПФ.

Ингибиторы АПФ противопоказаны при беременности. Применение ингибиторов АПФ во время беременности приводит к эмбриотоксическим эффектам: в I триместре описаны мальформации сердца, сосудов, почек, мозга; во II и III триместрах - приводит к гипотензии плода, гипоплазии костей черепа, почечной недостаточности, анурии и даже смерти плода, поэтому ингибиторы АПФ должны быть отменены сразу же после установления беременности.

Осторожность требуется при аутоиммунных заболеваниях, коллагенозах, особенно системной красной волчанке или склеродермии

(увеличивается риск развития нейтропении или агранулоцитоза); депрессии костного мозга.

Принципы дозирования. Дозирование ингибиторов АПФ имеет свои особенности, связанные с риском выраженного гемодинамического (гипотензивного) эффекта и предполагает применение метода титрования дозы - использование начальной низкой дозы препарата с последующим ее наращиванием с интервалами 2 недели до достижения средней терапевтической (целевой) дозы. Важным является достижение целевой дозы как для лечения АГ, ХСН, так и нефропатий, так как именно в этих дозах наблюдается максимальный органопротективный эффект ингибиторов АПФ.

Таблица 6.10

Дозирование ингибиторов АПФ

ПОБОЧНЫЕ ЭФФЕКТЫ ИНГИБИТОРОВ АПФ

Ингибиторы АПФ, ввиду общего механизма действия, связанного с неселективным блокированием фермента АПФ, имеют одинаковые класс-специфические побочные эффекты (ПЭ). К класс-специфичес-

ким ПЭ ингибиторов АПФ относятся: 1) наиболее частые - гипотензия, кашель, сыпь, гиперкалиемия; 2) менее частые - ангионевротический отек, расстройства кроветворения, вкуса и нарушение функции почек (в частности, у больных с билатеральным стенозом почечных артерий и с застойной сердечной недостаточностью, получающих диуретики).

Гипотония «первой дозы» и связанные с ней головокружения свойственны всем ингибиторам АПФ; они являются проявлением гемодинамического эффекта (частота до 2%, при сердечной недостаточности - до 10%). Особенно часты после приема первой дозы, у пожилых больных, у больных с высокой активностью ренина плазмы, с хронической сердечной недостаточностью, при гипонатриемии и сочетанном приеме диуретиков. Для уменьшения выраженности гипотонии «первой дозы» рекомендуется медленное титрование доз препаратов.

Кашель - класс-специфичный ПЭ ингибиторов АПФ; частота его возникновения широко колеблется от 5 до 20%, чаще не зависит от дозы препаратов, в основном встречается у женщин. Механизм развития кашля связан с активацией кинин-калликреиновой системы вследствие блокирования АПФ. При этом местно в стенке бронхов может накапливаться брадикинин и активировать другие провоспалительные пептиды (например, субстанция Р, нейропептид Y), а также гистамин, влияющие на бронхомоторику и провоцирующие кашель. Отмена ингибиторов АПФ полностью прекращает кашель.

Гиперкалиемия (выше 5,5 ммоль/л) является результатом уменьшения секреции альдостерона, возникающего при блокировании образования АТП, может наблюдаться у больных с ХПН, на фоне совместного приема калийсберегающих диуретиков, препаратов калия.

Кожная сыпь и ангионевротический отек (отек Квинке) связаны с увеличением уровня брадикинина.

Нарушение функции почек (повышение креатинина и остаточного азота в плазме крови) может наблюдаться в начале лечения ингибиторами АПФ, носит транзиторный характер. Значительное повышение креатинина в плазме крови может наблюдаться у больных с ЗСН и стенозом почечных артерий, сопровождающихся высокой активностью ренина плазмы и спазмом эфферентных артериол; в этих случаях необходима отмена препаратов.

Нейкопения, тромбоцитопения и агранулоцитоз возникают крайне редко (менее 0,5%).

Таблица 6.11

Лекарственные взаимодействия ингибиторов АПФ

Взаимодействующие препараты

Механизм взаимодействия

Результат взаимодействия

Диуретики

Тиазидные, петлевые

Дефицит натрия и жидкости

Резкая гипотония, риск почечной недостаточности

Калийсберегающие

Снижение образования альдостерона

Гиперкалиемия

Антигипертензивные средства

Совышения активности ренина или симпатической активности

Усиление гипотензивного действия

НПВС (особенно индометацин)

Подавление синтеза ПГ в почках и задержка жидкости

Препараты калия, пищевые добавки, содержащие калий

Фармакодинамическое

Гиперкалиемия

Средства угнетающие кроветворение

Фармакодинамическое

Риск нейтропении и агранулоцитоза

Эстрогены

Задержка жидкости

Снижение гипотензивного действия

ЛЕКАРСТВЕННЫЕ ВЗАИМОДЕЙСТВИЯ

Ингибиторы АПФ не имеют фармакокинетических взаимодействий; все лекарственные взаимодействия с ними относятся к фармакодинамическим.

Ингибиторы АПФ взаимодействуют с нестероидными противовоспалительными средствами, диуретиками, препаратами калия, гипотензивными средствами (табл. 6.11). Комбинация ингибиторов АПФ с диуретиками и другими гипотензивными средствами может приводить к усилению гипотензивного эффекта, при этом диуретики используются для потенцирования гипотензивного действия ингибиторов АПФ. При совместном применении с нестероидными противовоспалительными средствами (кроме аспирина в антиагрегантных дозах менее 150мг/сут) это может приводить к ослаблению гипотензивного действия ингибиторов АПФ вследствие задержки жидкости и блокирования синтеза ПГ в сосудистой стенке. Калийсберегающие диуретики и другие К+-содержащие средства (например, KCl, пищевые добавки с калием) могут увеличивать риск развития гиперкалиемии. Эстрогенсодержащие препараты могут уменьшать гипотензивное действие ингибиторов АПФ. Осторожность требуется при совместном применении препаратов, обладающих миелодепрессивным действием.

Таблица 6.12

Фармакокинетика ингибиторов АПФ


Для цитирования: Леонова М.В. Новые и перспективные лекарственные препараты, блокирующие ренин-ангиотензин-альдостероновую систему // РМЖ. Медицинское обозрение. 2013. №17. С. 886

Роль ренин-ангиотензин-альдостероновой системы (РААС) в развитии артериальной гипертонии (АГ) и других сердечно-сосудистых заболеваний в настоящее время считается главенствующей. В кардиоваскулярном континууме АГ находится среди факторов риска, а главным патофизиологическим механизмом поражения сердечно-сосудистой системы является ангиотензин II (АТII). АТII является ключевым компонентом РААС - эффектором, который реализует вазоконстрикцию, задержку натрия, активацию симпатической нервной системы, клеточную пролиферацию и гипертрофию, развитие оксидативного стресса и процессов воспаления сосудистой стенки.

В настоящее время уже получили развитие и широкое клиническое применение два класса препаратов, блокирующих РААС, - ингибиторы АПФ и блокаторы рецепторов АТII. Фармакологические и клинические эффекты этих классов имеют отличия. АПФ является пептидазой из группы цинк-металлопротеиназ, которая метаболизирует АТI, АТ1-7, брадикинин, субстанцию Р и многие другие пептиды . Механизм действия ингибиторов АПФ главным образом связан с предотвращением образования АТII, что способствует вазодилатации, натрийурезу и устраняет провоспалительный, пролиферативный и другие эффекты АТII. Кроме того, ингибиторы АПФ препятствуют деградации брадикинина и повышают его уровень. Брадикинин - мощный вазодилататор, он потенцирует натрийурез, а главное - обладает кардиопротективным (предотвращает гипертрофию, уменьшает ишемическое повреждение миокарда, улучшает коронарное кровоснабжение) и вазопротективным действием, улучшая эндотелиальную функцию. Вместе с тем, высокий уровень брадикинина - причина развития ангионевротического отека, что является одним из серьезных недостатков ингибиторов АПФ, которые значительно повышают уровень кининов.
Ингибиторам АПФ не всегда удается полностью блокировать образование АТII в тканях. В настоящее время установлено, что в его превращении в тканях могут участвовать и другие ферменты, не связанные с АПФ, прежде всего эндопептидазы, на которые действие ингибиторов АПФ не распространяется. В результате ингибиторы АПФ не могут полностью устранить эффекты АТII, что может быть причиной их недостаточной эффективности.
Решению этой проблемы способствовало открытие рецепторов АТII и первого класса препаратов, селективно блокирующих АТ1-рецепторы. Через АТ1-рецепторы реализуются неблагоприятные эффекты АТII: вазоконстрикция, секреция альдостерона, вазопрессина, норадреналина, задержка жидкости, пролиферация гладкомышечных клеток и кардиомиоцитов, активация САС, а также механизм отрицательной «обратной связи» - образование ренина. АТ2-рецепторы выполняют «полезные» функции, такие как вазодилатация, процессы репарации и регенерации, антипролиферативное действие, дифференцировка и развитие эмбриональных тканей. Клинические эффекты блокаторов рецепторов АТII опосредованы через устранение «вредных» эффектов АТII на уровне АТ1-рецепторов, что обеспечивает более полное блокирование неблагоприятных эффектов АТII и усиление влияния АТII на АТ2-рецепторы, что дополняет вазодилатирующий и антипролиферативный эффекты. Блокаторы рецепторов АТII обладают специфичным действием на РААС, не вмешиваясь в кининовую систему. Отсутствие влияния на активность кининовой системы, с одной стороны, уменьшает выраженность нежелательных эффектов (кашель, ангионевротический отек), но, с другой, лишает блокаторы рецепторов АТII важного антиишемического и вазопротективного действия, что отличает их от ингибиторов АПФ. По этой причине показания к применению блокаторов рецепторов АТII в большинстве повторяют показания к назначению ингибиторов АПФ, делают их альтернативными препаратами.
Несмотря на внедрение блокаторов РААС в широкую практику лечения АГ, проблемы улучшения исходов и прогноза остаются. К ним относятся: возможность улучшения контроля АД в популяции, эффективность лечения резистентной АГ, возможности дальнейшего снижения риска сердечно-сосудистых заболеваний.
Поиск новых путей воздействия на РААС активно продолжается; изучаются другие тесно взаимодействующие системы и создаются препараты с множественным механизмом действия, такие как ингибиторы АПФ и нейтральной эндопептидазы (НЭП), ингибиторы эндотелин-превращающего фермента (ЭПФ) и НЭП, ингибиторы АПФ/НЭП/ЭПФ .
Ингибиторы вазопептидаз
К вазопептидазам кроме известного АПФ относятся еще 2 других цинк-металлопротеиназы - неприлизин (нейтральная эндопептидаза, НЭП) и эндотелин-превращающий фермент, которые также могут быть мишенями для фармакологического воздействия.
Неприлизин - фермент, вырабатываемый эндотелием сосудов и участвующий в деградации натрийуретического пептида, а также брадикинина.
Система натрийуретического пептида представлена тремя разными изоформами: предсердным натрий-уретическим пептидом (А-тип), мозговым натрийуретическим пептидом (В-тип), которые синтезируются в предсердии и миокарде, и эндотелиальным С-пептидом, которые по своим биологическим функциям являются эндогенными ингибиторами РААС и эндотелина-1 (табл. 1) . Кардиоваскулярные и ренальные эффекты натрийуретического пептида заключаются в снижении АД через влияние на сосудистый тонус и водноэлектролитный баланс, а также в антипролиферативном и антифибротическом действии на органы-мишени. По самым последним данным, система натрийуретического пептида участвует в метаболической регуляции: окислении липидов, образовании и дифференцировке адипоцитов, активации адипонектина, секреции инсулина и толерантности к углеводам, что может обеспечивать защиту от развития метаболического синдрома .
К настоящему времени стало известно, что развитие сердечно-сосудистых заболеваний ассоциируется с дизрегуляцией системы натрийуретического пептида. Так, при АГ наблюдается дефицит натрийуретического пептида, приводящий к солечувствительности и нарушению натрийуреза; при хронической сердечной недостаточности (ХСН) на фоне дефицита наблюдается аномалия функционирования гормонов системы натрийуретического пептида .
Поэтому для потенцирования системы натрийуретического пептида с целью достижения дополнительного гипотензивного и протективных кардиоренальных эффектов возможно применение ингибиторов НЭП. Ингибирование неприлизина приводит к потенцированию натрийуретического, диуретического и вазодилатирующего эффектов эндогенного натрийуретического пептида и в результате - к снижению АД. Однако НЭП участвует в деградации и других вазоактивных пептидов, в частности АТI, АТII и эндотелина-1. Поэтому баланс эффектов воздействия на сосудистый тонус ингибиторов НЭП вариабельный и зависит от преобладания констрикторных и дилатирующих влияний. При длительном применении антигипертензивное действие ингибиторов неприлизина выражено слабо вследствие компенсаторной активации образования АТII и эндотелина-1 .
В этой связи сочетание эффектов ингибиторов АПФ и ингибиторов НЭП может существенно потенцировать гемодинамические и антипролиферативные эффекты в результате комплементарного механизма действия, что привело к созданию препаратов с двойным механизмом действия, объединенных названием - ингибиторы вазопептидаз (табл. 2, рис. 1) .
Известные ингибиторы вазопептидаз характеризуются разной степенью селективности к НЭП/АПФ: омапатрилат - 8,9:0,5; фазидоприлат - 5,1:9,8; сампатрилат - 8,0:1,2 . В результате ингибиторы вазопептидаз получили гораздо большие возможности в достижении гипотензивного эффекта вне зависимости от активности РААС и уровня задержки натрия и в органопротекции (регресс гипертрофии, альбуминурии, жесткости сосудов). Наиболее изученным в клинических исследованиях был омапатрилат, который показал более высокую гипотензивную эффективность в сравнении с ингибиторами АПФ, а у пациентов с ХСН приводил к увеличению фракции выброса и улучшению клинических исходов (исследования IMPRESS, OVERTURE), но без преимуществ перед ингибиторами АПФ .
Однако в крупных клинических исследованиях с применением омапатрилата была установлена более высокая частота развития ангионевротического отека в сравнении с ингибиторами АПФ. Известно, что частота развития ангионевротического отека при использовании ингибиторов АПФ составляет от 0,1 до 0,5% в популяции, из них 20% случаев являются жизнеугрожающими, что связано с многократным повышением концентраций брадикинина и его метаболитов . Результаты крупного многоцентрового исследования OCTAVE (n=25 302), которое было специально спланировано для изучения частоты развития ангионевротического отека, показало, что частота развития этого побочного эффекта на фоне лечения омапатрилатом превышает таковую в группе эналаприла - 2,17% против 0,68% (относительный риск 3,4) . Это объяснялось усилением влияния на уровень кининов при синергичном ингибировании АПФ и НЭП, связанным с ингибированием аминопептидазы Р, участвующей в деградации брадикинина .
Новый двойной ингибитор вазопептидаз, блокирующий АПФ/НЭП, - илепатрил, который имеет более высокую аффинность к АПФ в сравнении с НЭП . При изучении фармакодинамических эффектов илепатрила по влиянию на активность РААС и натрийуретического пептида у здоровых добровольцев было установлено, что препарат дозозависимо (в дозах 5 и 25 мг) и значимо (более 88%) подавляет АПФ в плазме крови продолжительностью более 48 ч вне зависимости от солечувствительности. Одновременно препарат значимо повышал активность ренина плазмы в течение 48 ч и уменьшал уровень альдостерона . Эти результаты показали выраженное и более продолжительное подавление РААС в отличие от ингибитора АПФ рамиприла в дозе 10 мг, что объяснялось более значимым тканевым действием илепатрила на АПФ и большей аффинностью к АПФ, и сопоставимую степень блокады РААС в сравнении с комбинацией 150 мг ирбесартана + 10 мг рамиприла. В отличие от действия на РААС, эффект илепатрила на натрийуретический пептид проявлялся кратковременным увеличением уровня его экскреции в период 4-8 ч после приема дозы 25 мг, что свидетельствует о меньшей и слабой аффинности к НЭП и отличает его от омапатрилата. Причем по уровню экскреции электролитов дополнительного натрийуретического действия в сравнении с рамиприлом или ирбесартаном у препарата нет, как впрочем, и у других ингибиторов вазопептидаз. Максимальное гипотензивное действие развивается через 6-12 ч после приема препарата, и снижение среднего АД составляет 5±5 и 10±4 мм рт.ст. при низкой и высокой солечувствительности соответственно . По фармакокинетическим характеристикам илепатрил представляет собой пролекарство с активным метаболитом, который быстро образуется с достижением максимальной концентрации через 1-1,5 ч и медленно элиминирует. В настоящее время проводятся клинические исследования III фазы.
Альтернативный путь к двойному подавлению РААС и НЭП представлен сочетанием блокады рецепторов АТII и НЭП (рис. 2) . Блокаторы рецепторов АТII не влияют на метаболизм кининов в отличие от ингибиторов АПФ, поэтому потенциально имеют меньший риск развития ангионевротических осложнений. В настоящее время проходит фазу III клинических исследований первый препарат - блокатор рецепторов АТII с эффектом ингибирования НЭП в соотношении 1:1 - LCZ696. Объединенная молекула препарата содержит валсартан и ингибитор НЭП (AHU377) в форме пролекарства . В крупном исследовании у больных с АГ (n=1328) препарат LCZ696 в дозах 200-400 мг показал преимущество в гипотензивном эффекте перед валсартаном в дозах 160-320 мг в виде дополнительного снижения АД на 5/3 и 6/3 мм рт.ст. . Гипотензивный эффект LCZ696 сопровождался более выраженным снижением пульсового АД: на 2,25 и 3,32 мм рт.ст. соответственно в дозах 200 и 400 мг, что в настоящее время рассматривается как положительный прогностический фактор по влиянию на жесткость сосудистой стенки и сердечно-сосудистые исходы. При этом изучение нейрогуморальных биомаркеров на фоне лечения LCZ696 показало увеличение уровня натрийуретического пептида при сопоставимой степени увеличения уровня ренина и альдостерона в сравнении с валсартаном. Переносимость у больных с АГ была хорошей, и случаев ангионевротического отека не было отмечено. В настоящее время завершено исследование PARAMOUMT у 685 пациентов с ХСН и ненарушенной ФВ . Результаты исследования показали, что LCZ696 быстрее и выраженнее снижает уровень NT-proBNP (первичная конечная точка - маркер повышения активности натрий-уретического пептида и неблагоприятного прогноза при ХСН) в сравнении с валсартаном, а также уменьшает размеры левого предсердия, что свидетельствует о регрессе его ремоделирования . Исследование у пациентов с ХСН и сниженной ФВ продолжается в настоящее время (исследование PARADIGM-HF).
Ингибиторы системы эндотелина
Система эндотелина играет важную роль в регуляции сосудистого тонуса и регионального кровотока. Среди трех известных изоформ эндотелин-1 является наиболее активным. Кроме известных вазоконстрикторных эффектов эндотелин стимулирует пролиферацию и синтез межклеточного матрикса, а также вследствие прямого воздействия на тонус почечных сосудов участвует в регуляции водно-электролитного гомеостаза. Эффекты эндотелина реализуются через взаимодействие со специфическими рецепторами А-типа и В-типа, функции которых взаимопротивоположны: через А-тип рецепторов происходит вазоконстрикция, а через В-тип - вазодилатация . В последние годы установлено, что рецепторы В-типа играют большую роль в клиренсе эндотелина-1, т.е. при блокаде этих рецепторов нарушается рецепторзависимый клиренс эндотелина-1 и увеличивается его концентрация . Кроме того, рецепторы В-типа участвуют в регуляции почечных эффектов эндотелина-1 и поддержании водно-электролитного гомеостаза, что имеет важное значение.
В настоящее время роль эндотелина доказана в развитии ряда заболеваний, в т.ч. АГ, ХСН, легочной гипертензии, хронических заболеваний почек; показана тесная связь между уровнем эндотелина и метаболическим синдромом, дисфункцией эндотелия и атерогенезом. С 1990-х гг. ведется поиск антагонистов рецепторов эндотелина, пригодных для клинического использования; уже известно 10 препаратов («сентаны») с разной степенью селективности к А/B-типу рецепторов . Первый неселективный антагонист рецепторов эндотелина - бозентан - в клиническом исследовании у больных с АГ показал гипотензивную эффективность, сопоставимую с таковой ингибитора АПФ эналаприла . Дальнейшие исследования эффективности применения антагонистов эндотелина при АГ показали их клиническую значимость в лечении резистентной АГ и при высоком сердечно-сосудистом риске. Эти данные были получены в двух крупных клинических исследованиях DORADO (n=379) и DORADO-АС (n=849), в которых пациентам с резистентной АГ добавлялся дарусентан к тройной комбинированной терапии . В исследовании DORADO у пациентов резистентная АГ сочеталась с хронической болезнью почек и протеинурией, в результате добавления дарусентана наблюдалось не только значительное снижение АД, но и уменьшение экскреции белка. Антипротеинурический эффект антагонистов рецепторов эндотелина был в последующем подтвержден в исследовании у пациентов с диабетической нефропатией при использовании авосентана . Однако в исследовании DORADO-АС преимуществ в дополнительном снижении АД перед препаратами сравнения и плацебо не было выявлено, что послужило поводом к прекращению дальнейших исследований. Кроме того, в 4 крупных исследованиях антагонистов эндотелина (бозентана, дарусентана, энрасентана) у пациентов с ХСН были получены противоречивые результаты, что объяснялось увеличением концентрации эндотелина-1 . Дальнейшее изучение антагонистов рецепторов эндотелина было приостановлено ввиду нежелательных эффектов, связанных с задержкой жидкости (периферические отеки, перегрузка объемом). Развитие этих эффектов связывают с воздействием антагонистов эндотелина на В-тип рецепторов, что изменило поиск препаратов, влияющих на систему эндотелина через другие пути; а антагонисты рецепторов эндотелина в настоящее время имеют только одно показание - лечение легочной гипертензии.
С учетом высокой значимости системы эндотелина в регуляции сосудистого тонуса ведется поиск другого механизма воздействия через вазопептидазу - ЭПФ, участвующий в образовании активного эндотелина-1 (рис. 3) . Блокирование ЭПФ и сочетание с ингибированием НЭП позволяют эффективно подавлять образование эндотелина-1 и потенцировать эффекты натрий-уретического пептида. Преимущества двойного механизма действия заключаются, с одной стороны, в предупреждении недостатков ингибиторов НЭП, связанных с возможной вазоконстрикцией, опосредованной активацией эндотелина, с другой, натрийуретическая активность ингибиторов НЭП позволяет компенсировать задержку жидкости, связанную с неселективной блокадой эндотелиновых рецепторов. Даглутрил является двойным ингибитором НЭП и ЭПФ, который находится во II фазе клинических исследований . В исследованиях показаны выраженные кардиопротективные эффекты препарата благодаря уменьшению ремоделирования сердца и сосудов, регрессу гипертрофии и фиброза.
Прямые ингибиторы ренина
Известно, что ингибиторы АПФ и блокаторы рецепторов АТII по механизму обратной связи повышают активность ренина, что является причиной ускользания эффективности блокаторов РААС. Ренин представляет собой самый первый этап каскада РААС; он вырабатывается юкстагломерулярными клетками почек. Ренин через ангиотензиноген способствует образованию АТII, вазоконстрикции и секреции альдостерона, а также регулирует механизмы обратной связи. Поэтому ингибирование ренина позволяет достичь более полной блокады системы РААС. Поиск ингибиторов ренина ведется с 1970-х гг.; долгое время не удавалось получить пер-оральную форму ингибиторов ренина ввиду их низкой биодоступности в ЖКТ (менее 2%). Первый прямой ингибитор ренина, пригодный для перорального применения, - алискирен - был зарегистрирован в 2007 г. Алискирен имеет низкую биодоступность (2,6%), большой период полувыведения (24-40 ч), внепочечный путь элиминации . Фармакодинамика алискирена связана с 80% уменьшением уровня АТII. В клинических исследованиях у пациентов с АГ алискирен в дозах 150-300 мг/сут приводил к снижению САД на 8,7-13 и 14,1-15,8 мм рт.ст. соответственно и ДАД - на 7,8-10,3 и 10,3-12,3 мм рт.ст. . Гипотензивный эффект алискирена наблюдался в разных подгруппах пациентов, включая больных с метаболическим синдромом, ожирением; по выраженности он был сопоставим с эффектом ингибиторов АПФ, блокаторов рецепторов АТII, а также отмечен аддитивный эффект в комбинации с валсартаном, гидрохлоротиазидом и амлодипином. В ряде клинических исследований были показаны органопротективные эффекты препарата: антипротеинурический эффект у пациентов с диабетической нефропатией (исследование AVOID, n=599) , регресс гипертрофии левого желудочка у пациентов с АГ (исследование ALLAY, n=465) . Так, в исследовании AVOID после 3-месячного лечения лозартаном в дозе 100 мг/сут и достижения целевого уровня АД (<130/80 мм рт.ст.) при компенсированном уровне гликемии (гликированный гемоглобин 8%) больных рандомизировали к приему алискирена в дозах 150-300 мг/сут или плацебо. Отмечено достоверное снижение индекса альбумин/креатинин в моче (первичная конечная точка) на 11% через 3 мес. и на 20% - через 6 мес. в сравнении с группой плацебо. В ночное время экскреция альбумина на фоне приема алискирена снизилась на 18%, а доля пациентов со снижением экскреции альбумина на 50% и более была вдвое большей (24,7% пациентов в группе алискирена против 12,5% в группе плацебо) . Причем нефропротективный эффект алискирена не был связан со снижением АД. Одним из объяснений выявленного нефропротективного эффекта у алискирена авторы считают полученные ранее в экспериментальных исследованиях на моделях диабета данные о способности препарата снижать количество рениновых и прорениновых рецепторов в почках, а также уменьшать профибротические процессы и апоптоз подоцитов, что обеспечивает более выраженный эффект в сравнении с эффектом ингибиторов АПФ . В исследовании ALLAY у пациентов с АГ и увеличением толщины миокарда ЛЖ (более 1,3 см по данным ЭхоКГ) применение алискирена ассоциировалось с одинаковой степенью регресса ИММЛЖ в сравнении с лозартаном и комбинацией алискирена с лозартаном: −5,7±10,6 , −5,4±10,8, −7,9±9,6 г/м2 соответственно. У части пациентов (n=136) проводилось изучение динамики нейрогормонов РААС, и было выявлено достоверное и значительное снижение уровня альдостерона и активности ренина плазмы на фоне применения алискирена или комбинации алискирена с лозартаном, тогда как на фоне применения монотерапии лозартаном эффект влияния на альдостерон отсутствовал, а на активность ренина - был противоположным, что объясняет значимость подавления альдостерона в достижении регресса ГЛЖ.
Кроме того, проводится серия клинических исследований алискирена при лечении других сердечно-сосудистых заболеваний с оценкой влияния на прогноз больных: исследования ALOFT (n=320), ASTRONAUT (n=1639), ATMOSPHERE (n=7000) у пациентов с ХСН, исследование ALTITUDE у пациентов с сахарным диабетом и высоким сердечно-сосудистым риском, исследование ASPIRE у пациентов с постинфарктным ремоделированием.
Заключение
Для решения проблем предупреждения сердечно-сосудистых заболеваний продолжается создание новых лекарственных препаратов со сложным множественным механизмом действия, позволяющих обеспечивать более полную блокаду РААС через каскад механизмов гемодинамической и нейрогуморальной регуляции. Потенциальные эффекты таких препаратов позволяют не только обеспечивать дополнительный гипотензивный эффект, но и достигать контроля уровня АД у пациентов высокого риска, включая резистентную форму АГ. Лекарственные препараты с множественным механизмом действия демонстрируют преимущества в более выраженном органопротективном действии, что позволит предупреждать дальнейшее поражение сердечно-сосудистой системы. Изучение преимуществ новых препаратов, блокирующих РААС, требует дальнейших исследований и оценки их влияния на прогноз больных с АГ и другими сердечно-сосудистыми заболеваниями.




Литература
1. Campbell D.J. Vasopeptidase inhibition: a doubleedged sword? // Hypertension. 2003. Vol. 41. P. 383-389.
2. Laurent S., Schlaich M., Esler M. New drugs, procedures, and devices for hypertension // Lancet. 2012. Vol. 380. P. 591-600.
3. Corti R., Burnett J.C., Rouleau J.L. et al. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? // Circulation. 2001. Vol. 104. P. 1856-1862.
4. Mangiafico S., Costello-Boerrigter L.C., Andersen I.A. et al. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics // Eur. Heart J. 2012, doi:10.1093/eurheartj/ehs262.
5. Rouleau J.L., Pfeffer M.A., Stewart D.J. et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial // Lancet. 2000. Vol. 356. P. 615-620.
6. Packer M., Califf R.M., Konstam M.A. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: The Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) // Circulation. 2002. Vol. 106. P. 920-926.
7. Warner K.K., Visconti J.A., Tschampel M.M. Angiotensin II receptor blockers in patients with ACE inhibitor-induced angioedema // Ann. Pharmacother. 2000. Vol. 34. P. 526-528.
8. Kostis J.B., Packer M., Black H.R. et al. Omapatrilat and enalapril in patients with hypertension:the Omapatrilat Cardiovascular Treatment vs Enalapril (OCTAVE) trial // Am. J. Hypertens. 2004. Vol. 17. P. 103-111.
9. Azizi M., Bissery A., Peyrard S. et al. Pharmacokinetics and pharmacodynamics of the vasopeptidase inhibitor AVE7688 in humans // Clin. Pharmacol. Ther. 2006. Vol. 79. P. 49-61.
10. Gu J., Noe A., Chandra P. et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dualacting angiotensin receptorneprilysin inhibitor (ARNi) // J. Clin. Pharmacol. 2010. Vol. 50. P. 401-414.
11. Ruilope L.M., Dukat A., Buhm M. et al. Bloodpressure reduction with LCZ696, a novel dualacting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study // Lancet. 2010. Vol. 375. P. 1255-1266.
12. Solomon S.D., Zile M., Pieske B. et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial // Lancet. 2012. Vol. 380(9851). P. 1387-1395.
13. Levin E.R. Endothelins // N. Engl. J. Med. 1995. Vol. 333. P. 356-363.
14. Dhaun N., Goddard J., Kohan D.E. et al. Role of endothelin-1 in clinical hypertension: 20 years on // Hypertension. 2008. Vol. 52. P. 452-459.
15. Burnier M., Forni V. Endothelin receptor antagonists: a place in the management of essential hypertension? // Nephrol. Dial. Transplant. 2011. 0: 1-4. doi: 10.1093/ndt/gfr704.
16. Krum H., Viskoper R.J., Lacourciere Y. et al. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators // N. Engl. J. Med. 1998. Vol. 338. P. 784-790.
17. Weber M.A., Black H., Bakris G. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial // Lancet. 2009. Vol. 374. P. 1423-1431.
18. Bakris G.L., Lindholm L.H., Black H.R. et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial // Hypertension. 2010. Vol. 56. P. 824-830.
19. Mann J.F., Green D., Jamerson K. et al. Avosentan for overt diabetic nephropathy // J. Am. Soc. Nephrol. 2010. Vol. 21. P. 527-535.
20. Kalk P., Sharkovska Y., Kashina E. et al. Endothelinconverting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner // Hypertension. 2011. Vol. 57. P. 755-763.
21. Nussberger J., Wuerzner G., Jensen C. et al. Angiotensin II suppression in humans by theorally active renin inhibitor Aliskiren (SPP100): comparison with enalapril // Hypertension. 2002. Vol. 39(1). P. E1-8.
22. Alreja G., Joseph J. Renin and cardiovascular disease: Wornout path, or new direction? // World J. Cardiol. 2011. Vol. 3(3). P. 72-83.
23. Ingelfinger J.R. Aliskiren and dual therapy in type 2 diabetes mellitus // N. Engl. J. Med. 2008. Vol. 358(23). P. 2503-2505.
24. Pouleur A.С., Uno H., Prescott M.F., Desai A. (for the ALLAY Investigators). Suppression of aldosterone mediates regression of left ventricular hypertrophy in patients with hypertension // J. Renin-Angiotensin-Aldosterone System. 2011. Vol. 12. P. 483-490.
25. Kelly D.J., Zhang Y., Moe G. et al. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats // Diabetol. 2007. Vol. 50. P. 2398-2404.


играет центральную роль в развитии ренальной гипертензии. Любое повреждение паренхимы почек (склероз, кисты, рубцы, микроангиопатические повреждения, тубуло- интерстициальное или гломерулярное воспаление) вызывает нарушение перфузии гломерул и повышает секрецию ренина.

Гиперренинемия ведет к ангиотензин II-зависимой вазоконстрикции, а также альдостерон-зависимой задержке натрия. Таким образом, повышается и общее периферическое сопротивление, и объем циркулирующей крови. У 90% больных с тХПН АГ носит объем- зависимый характер и у 10% ведущим является повышение активности РАС. Кроме того, высокий уровень ангиотензина II запускает процессы воспаления, гипертрофии миокарда, эндотелиального повреждения, пролиферацию мезангиальных клеток и интерстициальный фиброз.

Существенное влияние на объем внеклеточной жидкости и АД оказывает не контролируемое потребление натрия с пищей. Задержка натрия при ХБП может быть обусловлена как снижением СКФ, так и повышением его реабсорбции в канальцах, не зависящим и не зависящим от активации РААС (при гломерулонефритах с нефротическим синдромом).

У детей с АГ на диализе диурез обычно меньше, чем у нормотензивных пациентов того же возраста, а междиализная прибавка веса умеренно коррелирует с междиализным повышением АД (r=0,41). Нефрэктомия у детей на диализе с ренинзависимой АГ снижает среднее АД, а гипертензия приобретает объем-зависимый характер.

Важным механизмом АГ является повышение активности симпатической нервной системы, отмечающееся у больных с ХБП и особенно при ХПН. Лежащие в основе этого феномена механизмы пока не ясны и могут включать афферентные сигналы от почек, допаминергические нарушения и аккумуляцию лептина. Не только блокада b-рецепторов, но и ингибиция ангиотензин- превращающего фермента (АПФ) может уменьшать симпатическую гиперактивацию при ХБП. Представляется, что ренальная ишемия любого происхождения (в том числе локальная) вызывает симпатическую гиперактивацию.

Препараты, используемые в терапии больных при ХБП, могут вызывать ятрогенную артериальную гипертензию. Например, применение эритропоэтина в течение нескольких недель приводит к подъему АД у 20% больных. Глюкокортикоиды вызывают задержку жидкости за счет их минералокортикоидной активности. Циклоспорин А вызывает повышение гломерулярных афферентных артериол и гиперплазии юкстагломерулярного аппарата с последующим повышенным высвобождением ренина и ангиотензина II.

Таким образом, все дети с ХБП находятся в группе риска по развитию АГ. К группе высокого риска относятся больные с тХПН, реципиенты почечного трансплантата, больные с быстропрогрессирующим гломерулонефритом.

Ранняя диагностика АГ представляется чрезвычайно важной задачей для предупреждения отдаленных последствий гипертензии. С этой целью необходимо применение активных скрининговых методов, так как клинические симптомы АГ часто отсутствуют.

Простейшим скрининговым методом выявления АГ является регулярное измерение артериального давления, по меньшей мере, при каждом осмотре пациента врачом. Диагноз АГ правомерен, если не менее чем при 3-х клинических измерениях АД выше 95 перцентиля для данного возраста и роста. (Приложение 1.). В настоящее время широкое распространение получил метод 24-часового (суточного) мониторирования артериального давления (СМАД).

Это исследование позволяет диагностировать «скрытую гипертензию», т.е. не выявляемую при разовых клинических измерениях АД, например, в ночное время, исключить гипертензию «белого халата», которая встречается даже у детей, длительно находящихся в стационаре. В последнем случае целесообразно проведение СМАД амбулаторно, когда ребенок на протяжении исследования находится в привычной ему домашней обстановке.

Проведение СМАД показано всем детям с ХБП ежегодно. В случае выявления АГ необходимо также проведение офтальмологического осмотра (для оценки состояния сосудов сетчатки) и эхокардиографии (для исключения систолической и диастолической дисфункции, оценки степени гипертрофии миокарда). В дальнейшем эти исследования должны выполняться не реже 1 раза в год.

Основной целью антигипертензивной терапии является предупреждение повреждения органов-мишеней (особенно гипертрофии левого желудочка) и замедление прогрессирования ХБП. Всем детям с ХБП, осложненной АГ, показана антигипертензивная терапия до достижения уровня АД ниже 90 перцентиля для данного возраста и роста.

Терапия АГ включает в себя коррекцию образа жизни и диеты и медикаментозное лечение.

В рационе детей с ХБП, осложненной АГ, прежде всего, необходимо ограничить потребление натрия до 1-2 г/сут. Пища готовится без добавления соли, которая выдается дозировано для досаливания еды в тарелке, должны быть исключены все продукты с высоким содержанием натрия (консервы, колбасные изделия, ржаной хлеб и т.п.). Такого рода ограничения часто тяжело переносятся пациентами, но, неконтролируемое потребление натрия значительно снижает эффективность медикаментозной антигипертензивной терапии.

Ожирение не характерно для детей с ХБП и обычно связано с лечением стероидами. Постепенное снижение массы тела на фоне низкокалорийной диеты и дозированных физических нагрузок способствует нормализации АД. На практике применение низкокалорийной диеты затруднено из-за уже имеющихся у детей с ХБП диетических ограничений, и она редко оказывается эффективной. Тем не менее, у тучных детей с задержкой натрия может быть полезна комбинированная низкокалорийная диета с пониженным содержанием натрия.

У больных с АГ, получающих ЗПТ, изменение диализного режима может улучшить контроль АД до начала фармакологического лечения. В большинстве случаев, у диализных больных можно добиться нормализации показателей АД адекватной продолжительностью диализа, тщательным контролем баланса внеклеточной жидкости, более агрессивным достижением сухого веса. Считается, что сокращение натрия в диете в сочетании с низким натрием в диализате сравнимо по эффективности с увеличением диализного времени и позволяет добиться умеренного снижения АД.

На всех стадиях ХБП основой антигипертензивной терапии является фармакологическое лечение. Контроль АД ниже 90 перцентиля может быть достигнут монотерапией не более чем у 75% детей с ХБП 2-ой стадии. У остальных больных необходимо применение 2-х и более лекарственных препаратов. У детей с тХПН трудно достичь адекватного контроля АД, у 50% детей на диализе наблюдается неконтролируемая гипертензия.

У детей с АГ рекомендуется начинать лечение с одного препарата в низкой или средней терапевтической дозе и постепенно повышать ее до достижения контроля АД. При отсутствии достаточного эффекта от монотерапии показано использование комбинации из 2-х и более препаратов. Исключение - неотложные состояния при АГ, такие как гипертонический криз, гипертоническая энцефалопатия, когда лечение следует начинать с внутривенного введения препаратов до достижения клинического эффекта.

В настоящее время в терапии артериальной гипертензии используется широкий спектр лекарственных средств (Табл.2.1).

В первую очередь применяются препараты следующих групп:

· Ингибиторы ангиотензин-превращающего фермента (иАПФ)

· Блокаторы рецепторов к ангиотензину II (БРА)

· Блокаторы кальциевых каналов

· β - адреноблокаторы

· диуретики

К препаратам резерва относятся:

· α β – адреноблокаторы

· центральные α – антагонисты

· периферические α - антагонисты

· периферические вазодилататоры.

У детей с хронической патологией почек начинать терапию наиболее целесообразно с иАПФ или БРА. Эти препараты не только обладают гипотензивным действием, но и замедляют прогрессирование почечной недостаточности более эффективно, чем препараты других фармакологических групп. Ренопротективный эффект блокады РААС обусловлен снижением внутриклубочковой гипертензии путем избирательной дилатации эфферентной артериолы, снижением протеинурии, а также ослаблением провоспалительного и просклеротического действия ангиотензина II. Дополнительный эффект блокады РААС заключается в снижении симпатической гиперактивности.

Поскольку протеинурия является независимым фактором прогрессирования ХБП, пациенты с ХБП и протеинурией должны получать блокаторы РААС даже при отсутствии АГ. Не выявлено отчетливых преимуществ применения БРА перед иАПФ. Если протеинурия сохраняется на фоне монотерапии, то возможно применение комбинации иАПФ и БРА, так как это сочетание эффективно для уменьшения протеинурии и замедления прогрессирования ХБП.

Применение ингибиторов АПФ и БРА противопоказано пациентам со снижением СКФ ≤ 20 мл/мин, при гиперкалиемии, и при двустороннем стенозе почечных артерий. При назначении препаратов этих групп детям с ХБП 3-4 стадии необходимо контролировать уровень азотемии и калия после начала терапии и при каждом повышении дозы. Терапия комбинацией иАПФ и БРА повышает риск падения клубочковой фильтрации и гиперкалиемии. У детей с ХПН целесообразным может быть применение фозиноприла (моноприла), т.к. этот препарат (в отличие от других и АПФ) метаболизируется в основном в печени, а не выводится с мочой и более безопасен для больных с существенным нарушением почечных функций. Отмечено, что кашель, индуцированный иАПФ, у детей встречается реже, чем у взрослых; при возникновении этого побочного эффекта возможна замена иАПФ на БРА.

b-блокаторы – препараты второй линии для лечения детей с почечной гипертензией. b-блокаторы должны с осторожностью использоваться при сердечной недостаточности, а также у больных сахарным диабетом из-за негативных метаболических эффектов. Неселективные b-блокаторы противопоказаны при заболеваниях легких, сопровождающихся бронхообструкцией. У грудных детей хороший эффект оказывает назначение пропранолола. Ретардированная форма этого препарата позволяет назначать его 1 раз в день у старших детей. Предпочтительнее назначение селективных b1-блокаторов, например атенолола, который также обладает пролонгированным действием.

Применение b-блокаторов показано при наличии симптомов гиперактивации симпатической нервной системы: тахикардии, вазоконстрикции, высокого сердечного.

Блокаторы кальциевых каналов (БКК) используются как дополнительная терапия у детей с резистентной гипертензией. Дигидропиридиновые препараты (нифедипин, амлодипин и т.д.) действуют главным образом как вазодилататоры. Дозы амлодипина разработаны для педиатрии и не требуют коррекции в зависимости от почечной функции, однако дигидропиридиновые БКК (нифедипин) повышают внутриклубочковое давление и могут повышать протеинурию, не оказывая, следовательно, ренопротективного действия. Недигидропиридиновые БКК (производные фенилалкиламина - верапамил, бензодиазепина - дилтиазем) обладают дополнительным антипротеин- урическим эффектом.

В исследованиях у пожилых больных с сахарным диабетом 2 типа, недигдропиридиновые БКК показали себя как действенное средство в снижении протеинурии и АД и замедлении прогрессирование ХБП, их эффективность в этом отношении оказалась сравнима с иАПФ - лизиноприлом. Поскольку среди детей подобных исследований не проводилось, в детском возрасте недигдропиридиновые БКК должны применяться с осторожностью, учитывая их побочные эффекты (удлинение интервала PQ, брадиаритмии).

В исследованиях у больных с сахарным диабетом, АГ и протеинурией комбинация иАПФ с дигидропиридиновым БКК III поколения – манидипином - оказывала дополнительный антипротеинурический эффект по сравнению с монотерапией иАПФ. Показано благоприятное воздействие манидипина на почечную гемодинамику и протеинурию.

Внутривенное введение никардипина является методом выбора для лечения гипертонического криза, особенно в тех случаях, когда почечная функция не известна или быстро изменяется. Этот препарат может безопасно использоваться даже у очень маленьких детей с АГ.

Диуретики показаны, прежде всего, пациентам с задержкой натрия, гиперволемией и отеками и не являются препаратами первой линии в терапии АГ у детей с ХБП. Необходимо помнить, что тиазидные диуретики становятся малоэффективными при СКФ

Ренин-ангиотензин-альдостероновая система (РААС) выполняет важное гуморальное влияние на сердечно-сосудистую систему и участвует в регуляции артериального давления. Центральным звеном РААС является ангиотензин II (АТ II) (схема 1), который обладает мощным прямым вазоконстрикторным действием преимущественно на артерии и опосредованным действием на ЦНС, высвобождением катехоламинов из надпочечников и вызывает увеличение ОПСС, стимулирует секрецию альдостерона и приводит к задержке жидкости и повышению (ОЦК), стимулирует выброс катехоламинов (норадренолина) и других нейрогормонов из симпатических окончаний. Влияние АТ II на уровень АД осуществляется за счет действия на тонус сосудов, а также посредством структурной перестройки и ремоделирования сердца и сосудов. В частности, ATII является также фактором роста (или модулятором роста) для кардиомиоцитов и гладкомышечных клеток сосудов.

Схема 1. Строение ренин-ангиотензин-альдостероновой системы

Функции других форм ангиотензина. Ангиотензин I малозначим в системе РААС, так как быстро превращается в АТП, кроме того, его активность в 100 раз меньше активности АТП. Ангиотензин III действует подобно АТП, но его прессорная активность в 4 раза слабее АТП. Ангиотензин 1-7 образуется вследствие превращения ангиотензина I. По функциям он значительно отличается от АТП: он не вызывает прессорного действия, а наоборот, приводит к снижению АД благодаря секреции АДГ, стимуляции синтеза простагландинов, натрийуреза.

РААС оказывает регулирующее влияние на почечную функцию. АТП вызывает мощный спазм приносящей артериолы и снижение давления в капиллярах клубочка, уменьшение фильтрации в нефроне. В результате снижения фильтрации уменьшается реабсорбция натрия в проксимальном отделе нефрона, что приводит к увеличению концентрации натрия в дистальных канальцах и активации Na-чувствительных рецепторов плотного пятна в нефроне. По меха-низму обратной связи это сопровождается торможением выделения ренина и увеличением скорости клубочковой фильтрации.

Функционирование РААС связано с альдостероном и посредством механизма обратной связи. Альдостерон - важнейший регулятор объема внеклеточной жидкости и гомеостаза калия. Прямого действия на секрецию ренина и АТП альдостерон не оказывает, но возможно косвенное влияние через задержку натрия в организме. В регуляции секреции альдостерона участвуют АТП и электролиты, причем АТП - стимулирует, а натрий и калий - уменьшают его образование.

Гомеостаз электролитов тесно связан с активностью РААС. Натрий и калий не только влияют на активность ренина, но и изменяют чувствительность тканей к АТП. При этом в регуляции активности ренина большая роль принадлежит натрию, а в регуляции секреции альдостерона - калий и натрий имеют одинаковые влияния.

Физиологическая активация РААС наблюдается при потере натрия и жидкости, значительном снижении АД, сопровождающемся падением фильтрационного давления в почках, повышении активности симпатической нервной системы, а также под воздействием многих гуморальных агентов (вазопрессина, предсердного натрийуретического гормона, антидиуретического гормона).

Целый ряд сердечно-сосудистых заболеваний может способствовать патологической стимуляции РААС, в частности, при АГ, застойной сердечной недостаточности, остром инфаркте миокарда.

В настоящее время известно, что РАС функционирует не только в плазме (эндокринная функция), но и во многих тканях (головном мозге, сосудистой стенке, сердце, почках, надпочечниках, легких). Эти тканевые системы могут работать независимо от плазменной, на клеточном уровне (паракринная регуляция). Поэтому различают краткосрочные эффекты ATII, обусловленные свободно циркулирующей его фракцией в системном кровотоке, и отсроченные эффекты, регулируемые через тканевые РАС и влияющие на структурно-адаптационные механизмы поражения органов.

Ключевым ферментом РААС является ангиотензин-превращающий фермент (АПФ), он обеспечивает превращение ΑTI в ATII. Основное количество АПФ присутствует в системном кровотоке, обеспечивая образование циркулирующего АТII и краткосрочные геодинамические эффекты. Превращение АТ в ATII в тканях может осуществляться не только с помощью АПФ, но и другими ферментами (химазы, эндопероксиды, катепсин G и др.); считают, что им принадлежит ведущая роль в функционировании тканевых РАС и развитии длительных эффектов моделирования функции и структуры органов-мишеней.

АПФ идентичен ферменту кининазе II, участвующему в деградации брадикинина. Брадикинин - мощный вазодилататор, участвующий в регуляции микроциркуляции и ионном транспорте. Брадикинин имеет очень короткий период жизни и присутствует в кровотоке (тканях) в низких концентрациях; поэтому он проявлят свои эффекты как местный гормон (паракринно). Брадикинин способствует увеличению внутриклеточного Са 2 +, являющегося кофактором для NO-синтетазы, участвующей в образовании эндотелийрелаксирующего фактора (оксида азота или NO). Эндотелийрелаксирующий фактор, блокирующий сокращение мускулатуры сосудов и агрегацию тромбоцитов, является также ингибитором митоза и пролиферации гладкой мускулатуры сосудов, что обеспечивает антиатерогенное действие. Брадикинин также стимулирует синтез в эндотелии сосудов ПГЕ2 и ПГI2 (простациклина) - мощных вазодилататоров и тромбоцитарных антиагрегантов.

Таким образом, брадикинин и вся кининовая система являются противодействующей для РААС. Блокирование АПФ потенциально повышает уровень кининов в тканях сердца и сосудистой стенки, что обеспечивает антипролиферативный, антиишемический, антиатерогенный и антиагрегантный эффекты. Кинины способствуют увеличению кровотока, диуреза и натрийуреза без существенного изменения скорости клубочковой фильтрации. ПГ Е2 и ПГI2 также обладают диуретическим и натрийуретическим действием и увеличивают почечный кровоток.

Ренин-ангиотензин-альдостероновая система (РААС.)

В регуляции объема и давления крови участвует юкстагломерулярный аппарат (ЮГА). Образующийся в гранулах клеток ЮГА протеолитический фермент ренин катализирует превращение ангиотензиногена (одного из белков плазмы) в декапептид ангиотензин I, который не обладает прессорной активностью. Под действием ангиотензин-превращающего фермента (АПФ) он расщепляется (главным образом в легких, почках, головном мозге) до октапептида ангиотензина II, который действует как мощный вазоконстриктор, а также стимулирует выработку альдостерона корой надпочечников. Альдостерон усиливает реабсорбцию Nа+ в канальцах почек и стимулирует выработку антидиуретического гормона. В результате чего происходит задержка Nа+ и воды, что приводит к повышению АД. Кроме того, в плазме крови имеется ангиотензин III (гептапептид, не содержащий аспарагиновой кислоты), который также активно стимулирует высвобождение альдостерона, но обладает менее выраженным прессорным действием, чем ангиотензин II. Следует отметить, что чем больше образуется ангиотензина II, тем сильнее выражена вазоконстрикция и, следовательно, тем более выражено повышение АД.

Секреция ренина регулируется следующими механизмами, не являющимися взаимоисключающими:

  • 1) барорецепторами почечных сосудов, которые, очевидно, реагируют на изменение напряжения стенки приносящих артериол,
  • 2) рецепторами macula densa, которые, по-видимому, чувствительны к изменению скорости поступления или концентрации NaCl в дистальных канальцах,
  • 3) отрицательной обратной связью между концентрацией в крови ангиотензина и секрецией ренина
  • 4) симпатической нервной системой, стимулирующей секрецию ренина в результате активации в-адренорецепторов почечного нерва.

Система поддержания гомеостаза натрия. Она включает в себя скорость клубочковой фильтрации (СКФ) и факторы натрийуреза (выведения ионов натрия с мочой). При снижении ОЦК, снижается и СКФ, что приводит, в свою очередь, к повышению реабсорбции натрия в проксмальном отделе нефрона. К факторам натрийуреза относится группа пептидов со схожими свойствами и общим названием - натрийуретический пептид (или атриопептид), вырабатываемых миокардом предсердий в ответ на их расширение. Эффект атриопептида заключается в уменьшении реабсорбции натрия в дистальных канальцах и вазодилятации.

Система почечных вазодепрессорных субстанций включает: простагландины, калликреин-кининовая система, NO, фактор активации тромбоцитов, которые своим действием уравновешивают вазопрессорный эффект ангиотензина.

Кроме того, определенную роль в манифестации АГ играют такие факторы внешней среды (рис.1 пункт 6), как гиподинамия, курение, хронические стрессы, избыточное потребление с пищей поваренной соли.

Этиология артериальной гипертензии:

Этиология первичной, или эссенциальной, гипертензии не известна. И вряд ли одна причина смогла бы объяснить такое разнообразие гемодинамических и патофизиологических расстройств, которые наблюдаются при данном заболевании. В настоящее время многие авторы придерживаются мозаичной теории развития АГ, согласно которой поддержание высокого АД обусловлено участием многих факторов, даже если первоначально доминировал какой-либо один из них (например, взаимодействие симпатической нервной системы и ренин-ангиотензин-альдостероновой системы).

Не вызывает сомнения, что существует генетическая предрасположенность к гипертензии, однако точный механизм ее до сих пор не ясен. Возможно, что факторы внешней среды (такие как количество натрия в пище, характер питания и образ жизни, способствующие ожирению, хронический стресс) оказывают свое действие только на генетически предрасположенных лиц.

Основные причины развития эссенциальной гипертензии (или гипертонической болезни) на долю которой приходится 85-90% случаев всех АГ следующие:

  • - активация ренин-ангиотензин-альдостероновой системы при изменениях в генах, кодирующих ангиотензиноген или другие белки РААС,
  • - активация симпатической нервной системы, что приводит к повышению АД преимущественно путем вазоконстрикции,
  • - нарушение транспорта Na+ через клеточные мембраны гладкомышечных клеток кровеносных сосудов (в результате торможения Na+-K+-насоса или повышения проницаемости мембран для Na+ с повышением содержания внутриклеточного Са2+),
  • - дефицит вазодилятаторов (таких, как NO, компоненты калликреин-кининовой системы, простагландины, предсердный натрийуретический фактор и др.).

Среди основных причин симптоматических гипертензий можно выделить:

  • - первичное двустороннее поражение почек (которое может сопровождаться АГ вследствие как повышения секреции ренина и активации РААС с задержкой натрия и жидкости, так и снижения секреции вазодилятаторов) при таких заболеваниях, как острый и хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, амилоидоз, опухоли почек, обструктивная уропатия, коллагенозы и др.
  • - эндокринные (потенциально излечимые) заболевания, такие как первичный и вторичный гиперальдостеронизм, болезнь и синдром Иценко-Кушинга, диффузный тиреотоксический зоб (Базедова болезнь или болезнь Грейвса), феохромоцитома, ренин-продуцирующие опухоли почек.
  • - нейрогенные заболевания, в том числе сопровождающимися повышением внутричерепного давления (травма, опухоль, абсцесс, кровоизлияния), поражением гипоталамуса и ствола мозга, связанные с психогенными факторами.
  • - сосудистые заболевания (васкулиты, коарктация аорты и другие аномалии сосудов), полицитемия, увеличение ОЦК ятрогенного характера (при избыточном переливании препаратов крови и растворов).

Морфология артериальной гипертензии:

Доброкачественная форма АГ:

На ранних стадиях АГ не удается обнаружить никаких структурных изменений. В конечном же итоге развивается генерализованный артериолярный склероз.

Учитывая длительное течение болезни, выделяют три стадии, имеющие определенные морфологические различия и согласующиеся со стадиями, предложенными экспертами ВОЗ (указанными в скобках):

  • 1) доклиническая (легкое течение),
  • 2) распространенных изменений артерий (средней тяжести),
  • 3) изменений органов в связи изменением артерий и нарушением органного кровотока (тяжелое течение) доклиническая стадия.

Клинически проявляется транзиторной гипертензией (эпизодами повышения АД). На ранней, лабильной, стадии болезни СВ увеличен, ОПСС некоторое время остается в пределах нормы, но неадекватно для данного уровня СВ. Затем, вероятно в результате процессов ауторегуляции, ОПСС начинает увеличиваться, а СВ возвращается к нормальному уровню.

В артериолах и мелких артериях выявляется гипертрофия мышечного слоя и эластических структур > постепенное ^ толщины стенки сосуда с уменьшением его просвета, что клинически проявляется в ^ ОПСС. Спустя некоторое время на фоне катехолемии, ^ гематокрита, гипоксии (элементов стенки артерий и артериол) повышается сосудистая проницаемость, что приводит к плазматическому пропитыванию стенки сосудов > уменьшению ее эластичности и еще большему ^ ОПСС. Морфологические изменения на данной стадии полностью обратимы и при своевременном начале антигипертензивной терапии возможно предотвратить развитие поражений органов-мишеней.

В сердце, вследствие транзиторного ^ постнагрузки, возникает умеренная компенсаторная гипертрофия левого желудочка при которой размеры сердца и толщина стенки левого желудочка ^, а размер полости левого желудочка не изменяется либо может несколько уменьшаться - концентрическая гипертрофия (характеризует стадию компенсации сердечной деятельности).

Стадия распространенных изменений артерий. Клинически проявляется стойким повышением АД.

В артериолах и мелких артериях мышечного типа выявляется распространенный гиалиноз, развившийся в исходе плазматического пропитывания (простой тип сосудистого гиалина), или артериолосклероз средней оболочки и интимы артериол в ответ на выход плазмы и белков. Артериологиалиноз отмечается в почках, головном мозге, сетчатке глаза, поджелудочной железе, кишечнике, капсуле надпочечников. Макроскопически гиалинизированные сосуды выглядят в виде стекловидных трубочек с толстыми стенками и точечным просветом, плотной консистенции. Микроскопически в стенке артериол выявляются гомогенные эозинофильные массы, слои стенки могут быть практически не различимы.

В артериях эластического, мышечно-эластического и мышечного типов развиваются: - эластофиброз - гиперплазия и расщепление внутренней эластической мембраны, склероз - атеросклероз, имеющий ряд особенностей:

  • а) носит более распространенный характер, захватывает артерии мышечного типа,
  • б) фиброзные бляшки имеют циркулярный характер (а не сегментарный), что приводит к более значительному сужению просвета сосуда.

В сердце нарастает степень гипертрофии миокарда, масса сердца может достигать 900-1000 г, а толщина стенки левого желудочка - 2-3 см (cor bovinum). Однако, в связи с относительной недостаточностью кровоснабжения (увеличение размеров кардиомиоцитов, гиалиноз артериол и артерий) и нарастающей гипоксией развивается жировая дистрофия миокарда и миогенное расширение полостей - эксцентрическая гипертрофия миокарда, диффузный мелкоочаговый кардиосклероз, появляются признаки сердечной декомпенсации.

3) Стадия изменений органов в связи изменением артерий и нарушением органного кровотока.

Вторичные изменения органов при неосложенном артериологиалинозе и атеросклерозе могут развиваться медленно, что приводит к атрофии паренхимы и склерозу стромы.

При присоединении тромбоза, спазма, фибриноидного некроза во время криза возникают острые нарушения кровообращения - кровоизлияния, инфаркты.

Изменения в головном мозге:

Множественные мелкоочаговые кровоизлияния (hemorragia per diapedesin).

Гематомы - кровоизлияния с разрушением ткани мозга (hemorragia per rhexin микроанавризм, которые возникают чаще на фоне гиалиноза с фибриноидным некрозом стенки мелких перфорирующих артерий головного мозга преимущественно подкорковых ядер и субкортикального слоя). В исходе кровоизлияний в ткани головного мозга формируются ржавые кисты (окраска обусловлена гемосидерином).

В почках развивается артериолосклеротический нефросклероз или первичное сморщивание почек, в основе которого лежит артериологиалиноз >запустевание со склерозом и гиалинозом капилляров клубочков > склероз стромы вследствие длительной гипоксии > атрофия эпителия канальцев почек.

Макроскопическая картина: почки значительно уменьшены в размерах (вид местной атрофии от недостатка кровоснабжения), поверхность мелкозернистая, плотные, на разрезе отмечается истончение коркового и мозгового слоев, разрастание жировой клетчатки вокруг лоханки. Участки западения на поверхности почек соответствуют атрофированным нефронам, а очаги выбухания - функционирующим нефронам в состоянии компенсаторной гипертрофии.

Микроскопическая картина: стенки артериол значительно утолщены за счет накопления в интиме и средней оболочке гомогенных слабооксифильных бесструктурных масс гиалина (в некоторых случаях структурные компоненты стенки артериол, за исключением эндотелия, не дифференцируются), просвет сужен (вплоть до полной облитерации). Клубочки коллабированы (спавшиеся), многие замещены соединительной тканью или массами гиалина (в виде слабооксифильных гомогенных «медальончиков»). Канальцы атрофированы. Количество интерстициальной ткани увеличено. Сохранившиеся нефроны компенсаторно гипертрофированы.

Артериолосклеротический нефросклероз может закончиться развитием хронической почечной недостаточности.

Злокачественная форма АГ:

В настоящее время встречается редко.

Возникает первично или осложняет доброкачественную гипертензию (гипертонический криз).

Клинически: уровень Рдиаст.? 110-120 мм рт. ст., зрительные расстройства (из-за двустороннего отека диска зрительного нерва), резкие головные боли и гематурия (реже - анурия).

Уровень ренина и ангиотензина II в сыворотке крови высокий, значительный вторичный гиперальдстеронизм (сопровождающийся гипокалиемией).

Возникает чаще у мужчин среднего возраста (35-50 лет, редко до 30-ти лет).

Быстро прогрессирует, без лечения приводит к развитию хронической почечной недостаточности (ХПН) и летальному исходу в течение 1-2 лет.

Морфологическая картина:

Вслед за короткой стадией плазматического пропитывания следует фибриноидный некроз стенки артериол >повреждение эндотелия > присоединение тромбоза > органные изменения: ишемическая дистрофия и инфаркты, кровоизлияния.

Со стороны сетчатки: двусторонний отек диска зрительного нерва, сопровождающийся белковым выпотом и кровоизлияниями в сетчатку

В почках: злокачественный нефросклероз (Фара), для которого характерны фибриноидный некроз стенок артериол и капиллярных петель клубочков, отек интерстиция, геморрагии > клеточная реакция и склероз в артериолах, клубочках и строме, белковая дистрофия эпителия канальцев почек.

Макроскопическая картина: вид почек зависит от длительности предсуществующей фазы доброкачественной АГ. В связи с этим, поверхность может быть гладкой или гранулированной. Весьма характерны петехиальные кровоизлияния, которые придают почке пестрый вид. Прогрессирование дистрофических и некротических процессов быстро приводит к развитию ХПН и смерти.

В головном мозге: фибриноидный некроз стенок артериол с присоединением тромбоза и развитием ишемических и геморрагических инфарктов, кровоизлияний, отек.

Гипертонический криз - резкое повышение АД, связанное со спазмом артериол - может возникать в любой стадии гипертензии.

Морфологические изменения при гипертоническом кризе:

Спазм артериол: гофрированность и деструкция базальной мембраны эндотелия с расположением его в виде частокола.

Плазматическое пропитывание.

Фибриноидный некроз стенок артериол.

Диапедезные кровоизлияния.

Клинико-морфологические формы АГ:

В зависимости от преобладания сосудистых, дистрофических, некротических, геморрагических и склеротических процессов в том или ином органе, выделяют следующие формы:

Сердечная форма - составляет сущность ишемической болезни сердца (как и сердечная форма атеросклероза)

Мозговая форма - лежит в основе большинства цереброваскулярных заболеваний (как и атеросклероз сосудов головного мозга)

Почечная форма характеризуется как острыми (артериолонекроз - морфологическое проявление злокачественной гипертензии), так и хроническими изменениями (артериолосклеротический нефросклероз).

Рис. 1

Список сокращений к лекции «Гипертоническая болезнь»

АГ - артериальная гипертензия.

АД - артериальное давление.

ОЦК - объем циркулирующей крови.

СВ - сердечный выброс.

ОПСС - общее периферическое сопротивление сосудов.

УО - ударный объем.

ЧСС - частота сердечных сокращений.

СНС - симпатическая нервная система.

ПСНС - парасимпатическая нервная система.

РААС - ренин-ангиотензин-альдостероновая система.

ЮГА - юкстагломерулярный аппарат.

АПФ - ангиотензин-превращающий фермент.

СКФ - скорость клубочковой фильтрации.

ВОЗ - всемирная организация здравоохранения.

ХПН - хроническая почечная недостаточность.

Понравилась статья? Поделитесь с друзьями!