Как производится определение прочности бетона неразрушающими методами. Неразрушающий контроль бетона – методы и оборудование

Определение прочности бетона является очень важным фактором. Эксплуатационные параметры данного материала зависят именно от этого качества. Прочностью является способность противостоять внешним агрессивным средам и механическим силам. При строительстве и обследовании конструкций из железобетона прочность на сжатие – самый контролируемый параметр.

Дефектоскоп предназначен для определения времени распространения ультразвуковых колебаний в бетоне. Удобен для определения качества бетона строящихся и эксплуатируемых зданий и там, где затруднен двусторонний доступ к проверяемым сооружениям.

Существует огромное количество методов контроля, которые используются на практике. Самый достоверный – определение по испытанию конструкции после того, как набрана проектная прочность. Способ испытания контрольных образцов дает возможность сделать оценку качества смеси, но не прочности в конструкции. Вызвано это невозможностью обеспечить аналогичные условия набора прочности (нагрев, вибрирование) для бетонных кубиков и бетона в конструкции. Способы контроля по классификации ГОСТ 18105-2010 делятся на 3 группы.

Методы определения прочности:

  1. Разрушающие.
  2. Прямые неразрушающие.
  3. Косвенные неразрушающие.

К первой группе относят метод контрольных образцов, а также метод определения прочности вследствие испытания тех образцов, которые были отобраны из конструкций. Последний способ является базовым и его считают более достоверным и точным. Но при испытании его используют очень редко. Самыми главными причинами являются значительное нарушение целостности конструкции и большая стоимость исследований.

Именно по показателю прочности при сжатии определяется класс бетона. Кубики раздавливают гидравлическим прессом, а он выдает результат.

Зачастую используются методы неразрушающего контроля. Но большая часть работ делается косвенными методами. На сегодня самыми распространенными выступают ультразвуковой способ по ГОСТ 17624-87, метод ударного импульса и метод упругого отскока по ГОСТ 22690-88. При использовании этих методов очень редко соблюдают требования стандартов по построению градуировочных зависимостей. Некоторые просто не знают таких требований. Остальные знают, но не понимают величину ошибки результатов измерений при использовании зависимости, прилагаемой к прибору, вместо зависимости, которая построена на исследуемом бетоне.

Существуют мастера, которые знают об указанных требованиях норм, но не обращают на них внимания и ориентируются на финансовую выгоду и на то, что заказчик ничего не понимает в данном вопросе.

О факторах, которые влияют на неправильное измерение прочности без построения градуировочных зависимостей, существует достаточно информации.

В таблице 1 показаны данные о максимальной погрешности измерений разными методами.

Название способа

Диапазон использования, МПа

Погрешность измерения

Пластической деформации

Ударного импульса

Упругого отскока

Нет данных

Отрыва со скалыванием

Нет данных

Скалывания ребра

Нет данных

Ультразвуковой

В дополнение к проблеме использования несоответствующих зависимостей добавляется еще одна, которая возникает при обследовании. По требованиям СП 13-102-2003 снабжение выборки параллельных исследований бетона прямым и косвенным методами на более 30 участках необходимо, но недостаточно, чтобы построить и использовать градуировочную зависимость.

Нужно, чтобы зависимость, которая получена парным корреляционно-регрессивным анализом, имела достаточно высокий коэффициент корреляции (больше 0,7) и низкое среднеквадратическое отклонение (меньше 15% средней прочности). Для того чтоб это условие было выполнено, точность измерений двух контролируемых параметров должна быть высокой, а прочность, который строит зависимость, должна меняться в достаточно широком диапазоне.


В приборе установлен молоток, который вдавливает шарик в бетон и по его отскоку определяется прочность бетона, показатели высвечиваются на дисплее.

Когда выполняется исследование конструкций, данные условия соблюдаются редко. Первым моментом является то, что базовый метод испытания часто сопровождается большой погрешностью. Вторым – то, что из-за неоднородности бетона прочность поверхностного слоя может не совпадать с прочностью того же участка на некоторой глубине. Если бетонирование имеет хорошее качество и бетон соответствует проектному классу, в пределах одного объекта редко встречаются однотипные конструкции с прочностью, которая изменяется в широком диапазоне. К примеру, от В20 до В60. Поэтому зависимость нужно строить по выборке измерений с небольшим изменением параметра, который исследуется.

Если не нарушать требования действующих норм для определения прочности при исследовании, нужно применять прямые неразрушающие либо разрушающие методы контроля.

Теперь подробнее о прямых методах контроля. К ним относят 3 метода по ГОСТ 22690-88:

  • метод отрыва;
  • метод отрыва со скалыванием;
  • метод скалывания ребра.

Список необходимых инструментов:

  • прибор для метода отрыва с диском для приклеивания;
  • анкеры;
  • дюбели;
  • электронный блок;
  • датчики;
  • эталонный металлический стержень.


График увеличения прочности во времени: линия А – вакуумной обработка; линия В – естественное твердение; С – увеличение прочности (в %) бетона после вакуумной обработки.

Определение прочности методом отрыва

Этот метод основан на измерении максимального усилия, которое необходимо для отрыва сегмента конструкции. Отрывающая нагрузка применяется к ровной поверхности конструкции, которая испытывается благодаря приклеиванию стального диска, который имеет тягу для соединения с прибором. Для приклеивания можно использовать разнообразные клеи на эпоксидной основе. В ГОСТ 22690-88 рекомендуют клеи ЭД20 и ЭД16 с цементным наполнением.

На сегодняшний день можно использовать современные двухкомпонентные клеи, производство которых хорошо налажено. В литературе, посвященной испытанию, методика испытания подразумевает приклеивание диска к участку исследования без дополнительных мер по ограничению зоны отрыва. Площадь отрыва непостоянная и ее необходимо определять после каждого испытания. В заграничной практике перед исследованием участок отрыва ограничивается бороздой, которая создается кольцевыми сверлами. В таком случае площадь отрыва является постоянной и известной. Именно это увеличивает точность измерений.

После отрыва фрагмента и после определения усилия определяют прочность бетона на растяжение (Rbt). По ней с помощью пересчета по эмпирической зависимости можно определить прочность на сжатие (R). Можно воспользоваться такой формулой:

Rbt = 0,5∛(R^2)

Для метода отрыва можно применять разные приборы, которые используют для метода отрыва со скалыванием. Это ПОС-50МГ4, ОНИКС-ОС, ПИБ и старые аналоги – ГПНВ-5, ГПНС-5. Чтобы провести испытание, необходимо наличие захватного устройства, которое соответствует тяге, расположенной на диске.

Способ отрыва со скалыванием


Устанавливают анкерное устройство после отвердения бетона в высверленное отверстие, а потом его вырывают с куском

Такой метод имеет много общего с методом, который описан выше. Главное различие – это способ крепления к материалу. Для приложения отрывающего усилия используют лепестковые анкеры разных размеров. При исследовании конструкций анкеры укладываются в шпур, пробуренный на участке измерения. Точно так же, как и при методе отрыва, измеряется разрушающее усилие (P). Переход к прочности на сжатие делается по указанной в ГОСТ 22690 зависимости:

где m1 – коэффициент, который учитывает максимальный размер большого заполнителя, а m2 – коэффициент перехода к прочности на сжатие, который зависит от вида бетона и условий затвердевания.

В России этот метод наиболее распространен вследствие своей универсальности (табл.1), относительной легкости и возможности испытания на любом участке конструкции. Главные ограничения для его применения: густое армирование и толщина исследуемой конструкции. Эта толщина должна быть больше, чем удвоенная длина анкера. Для выполнения исследований нужно использовать прибор для метода отрыва с диском для приклеивания к бетону.

По сравнению с методом отрыва в данном случае не обязательно наличие ровной поверхности. Важное условие: кривизна поверхности должна быть достаточной, чтобы установить прибор на тягу анкера.


Надо ударить по поверхности не менее 5 раз, а затем по размерам отпечатков и с помощью тарировочной таблицы определяется прочность.

Скалывание ребра

Последний прямой метод неразрушающего контроля – метод скалывания ребра. Главное его отличие заключается в том, что прочность определяется по усилию (P), которое необходимо для скалывания участка конструкции, расположенному на ребре с внешней стороны.

Недавно была разработана конструкция прибора, позволяющая установить его на исследуемый элемент с наличием одного внешнего ребра. Укрепление осуществляется к одной поверхности испытываемого элемента с помощью анкера с дюбелем. Это новшество несколько расширило диапазон применения прибора. Но вместе с этим и аннулировало главное преимущество метода скалывания, заключавшееся в отсутствии нужды сверления и потребности в источнике электроэнергии.

Прочность на сжатие с использованием метода скалывания ребра определяют по нормированной зависимости:

R = 0,058 * m * (30P + P2),

где m – коэффициент, который учитывает крупность заполнителя.

Ультразвуковое определение

Действие приборов ультразвукового контроля основано на связи, существующей между скоростью распространения ультразвуковых волн по материалу и его прочностью. В зависимости от способа прозвучивания различают две градуировочные зависимости:

  • скорость распространения волн – прочность;
  • время распространения волн ультразвука – прочность бетона.


Показания данного прибора неразрушающего метода используют для корректировки показаний приборов, действующих методом ударного импульса и ультразвуковым методом.

Метод сквозного прозвучивания в поперечном направлении используется для сборных линейных конструкций. Ультразвуковые преобразователи при таких исследованиях инсталлируются с двух противоположных сторон контролируемой конструкции.

Поверхностным прозвучиванием исследуют ребристые, плоские, многопустотные плиты перекрытия, стеновые панели. Волновой преобразователь инсталлируется с одной стороны конструкции.

Чтобы получить надежный акустический контакт между испытуемой конструкцией и рабочей поверхностью ультразвукового преобразователя, используют вязкие контактные материалы типа солидола. Можно установить «сухой контакт» с использованием конусных насадок и протекторов. Ультразвуковые преобразователи устанавливаются на расстоянии не меньше 3 см от края конструкции.

Приборы для ультразвукового контроля прочности состоят из электронного блока и датчиков. Датчики бывают раздельными или объединенными для поверхностного прозвучивания.


Определение прочности молотком Кашкарова

Испытания молотком Кашкарова необходимо выполнять в соответствии с ГОСТ 22690.2-77. Метод применяется для того, чтобы определить прочность в диапазоне 5-50 МПа. В местах исследования поверхность конструкции должна быть ровной. Если поверхность шероховатая и есть краска, то она зачищается металлической щеткой.

По подготовленной поверхности наносится удар средней силы. Его необходимо наносить перпендикулярно к испытываемой поверхности. В результате удара получаются одновременно 2 отпечатка – на поверхности бетона и на эталонном металлическом стержне. После каждого последующего удара эталонный металлический стержень перемещают в отверстие корпуса молотка не меньше чем на 10 мм, чтобы отпечатки были на одной линии. Удары наносят через листы копировальной белой бумаги. Отпечатки на бумаге и эталонном стержне вымеряют угловым масштабом с точностью до 0,1 мм.

Для каждой выполненной серии отпечатков одной области делают сумму диаметров всех полученных отпечатков отдельно на бетоне и на эталонном стержне. За косвенную характеристику прочности бетона принимают среднюю величину отношения измеренных отпечатков в одной области на бетоне и эталонном стержне.

Цель работы – освоить методику определения прочности бетона в конструкциях неразрушающими методами контроля.

Приборы и оборудование.

Приборы для определения прочности бетона «ОНИКС-2.3»; измерительный стабилизированный прибор ЕСТНА 1000; гидравлический пресс П-125; металлическая линейка; лабораторные образцы (бетонные кубы, 3 шт.).

Прибор для определения прочности бетона «оникс-2.3»

Назначение и область применения

Прочность бетона определяют по предварительно установленным градуировочным зависимостям между прочностью бетонных образцов по ДСТУ Б В.2.7-114:2009 и косвенным характеристикам прочности.

Прибор «ОНИКС-2.3 предназначен для определения прочности бетона на сжатие неразрушающим ударно-импульсным методом при технологическом контроле качества, обследовании сооружений и конструкций, также для определения твердости, однородности, плотности и пластичности различных материалов (кирпич, штукатурка, композиты и др.).

Основные технические характеристики

Диапазон измерений прочности -1...100 МПа; погрешность - 5%; энергия удара - 0,07...0,12 Дж; питание - от 2 аккумуляторных батарей или элементов типоразмера АА; масса измерителя - 0,14 кг; масса датчика - 0,16 кг; память - 1000 результатов; эталон - контрольное устройство из текстолита.

Принцип работы

Косвенной характеристикой прочности является значение отскока бойка от поверхности бетона (или прижатого к ней ударника).

Принцип работы прибора заключается в обработке импульсной переходной функции электрического сигнала, возникающего в чувствительном элементе при ударе о бетон. Преобразование получаемого электрического параметра в прочность или другой эквивалентный параметр производится по формулам:

где -условная твердость материала, МПа;

- эквивалент электрического параметра:

- прочность, МПа; - коэффициент преобразования;

- коэффициент возраста бетона; - коэффициент формы;


- коэффициенты аппроксимирующего полинома.

Устройство прибора

Прибор состоит из: электронного блока с сигнальным процессором, размещенным в корпусе; 9-ти клавишной клавиатуры и графического дисплея, расположенных на лицевой панели корпуса; датчика - склерометра, подключаемого к электронному блоку посредством кабеля через разъем, расположенный в верхней торцевой части корпуса. Рядом с разъемом расположено окно инфракрасного канала связи с компьютером для передачи и обработки результатов.

Доступ к элементам питания открывается после снятия крышки батарейного отсека на задней стенке корпуса. На левой боковой стенке имеется кистевой ремешок.

Прибор состоит из 9-ти клавиш (рис.1.1).

Клавиша « © » используется для включения и выключения прибора. Отключение производится также автоматически через заданный интервал времени, если с прибором не производится никаких действий.

Клавиша «  » служит для включения и выключения подсветки дисплея. При включении прибора подсветка всегда отключена.

Клавиша « М » служит для перевода прибора в режим измерения прочности.

Клавиша « F » является функциональной, предназначена для работы в режиме главного меню и меню.

Клавиши «←», «→» предназначены для управления курсором (мигающий знак, цифра 1 т.п.) в режиме установки рабочих параметров, а также для управления просмотром памяти результатов по номерам.

Клавиши «», «↓» предназначены для выбора строки меню, для установки значений параметров и для просмотра памяти по датам.

Клавиша « С » служит для сброса устанавливаемых параметров в начальное состояние и для удаления ненужных результатов.

Порядок работы

При подготовке прибора к работе необходимо:

– подсоединить к прибору датчик-склерометр;

– включить питание прибора нажатием клавиши «© », при этом на дисплее должно появиться сообщение о температуре и напряжении питания, а через 2 сек. - главное меню: если дисплей не работает или появляется сообщение "Зарядить АКБ", следует заменить элементы питания или зарядить аккумулятор.

Перед началом измерений необходимо выполнить ориентацию прибора в следующей последовательности:

Установить направление удара;

Выбрать вид материала через пункт главного меню «Материалы»: бетон (тяжелый, легкий, бетон X), кирпич (керамический, силикатный, кирпич X), раствор, материал X;

Установить возраст бетона (при необходимости);

Сориентировать прибор по количеству ударов;

При необходимости установить размерность измеряемого параметра: МПа или кгс/см 2 ;

Через пункт главного меню "Дополнительно" произвести первичную установку: даты и времени; интервала времени автоматического отключения и установить тип источника питания.

Рис.1.1. Ударно-импульсный прибор ОНИКС-2.3

Качественно изготовленные бетонные конструкции способны прослужить не один десяток лет. Одним из наиболее важных и ключевых методов, служащих для определения их надежности, является неразрушающий контроль бетона, выясняющий однородность материала, его прочность, толщину защитного слоя и другие немаловажные показатели готовых изделий.

Методы неразрушающего контроля

Наиболее значимым параметром для бетонных изделий является прочность материала на сжатие, хотя в некоторых конструкциях одним из основных показателей считается прочность бетона на растяжение при изгибе.

Контрольные замеры производятся как в лабораториях, так и непосредственно на строительных площадках.

Неразрушающим контролем называется определение свойств и характеристик бетонных конструкций без нарушения их пригодности и возможности дальнейшей эксплуатации. Следует отметить, что все существующие методы контроля представляют собой косвенные способы получения необходимых показателей. Каждый из способов имеет свои неоспоримые достоинства и некоторые ограничения в использовании, поэтому выделить какой-либо из них не представляется возможным.

Наиболее простым считается контроль линейных замеров изделия, а также соответствие возможным отклонениям в вертикальном и горизонтальном направлении конструктивных элементов сооружения в целом. При этом используют:

  • рулетки;
  • линейки;
  • щупы;
  • штангенциркули;
  • нивелиры;
  • теодолиты.


К неразрушающим методам контроля на прочностные характеристики и однородность внутренней структуры бетона относятся:

  • местные разрушения – на отрыв со скалыванием, на скалывание ребра, либо отрыв стальных дисков;
  • ударное воздействие – величина отскока, импульс при ударе, искусственная деформация;
  • ультразвук.

На точность контроля могут влиять некоторые факторы:

  • марка и состав цементной смеси;
  • разновидность заполнителя;
  • карбонизация – изменения, возникающие в поверхностном слое под воздействием углекислого газа;
  • условия схватывания и отвердевания;
  • возраст бетона;
  • влажностные и температурные параметры поверхности.

Методы местных разрушений

Подобные способы считаются наиболее точными из всех существующих неразрушающих методов, так как в них предусматривается использование универсальной и достаточно простой градуировочной зависимости, в которой принимаются во внимание два параметра:

  • разновидность бетона (относится к легкому или тяжелому типу);
  • крупность заполнителя.

Методом отрыва со скалыванием регистрируют сопротивление бетона при местном разрушении изделия в момент отрыва его фрагмента анкерным устройством. Данный способ является достаточно точным, но трудоемким. К тому же, его использование невозможно в конструкциях со слишком тонкими стенками и на густоармированных участках.


Метод скалывания ребра предусматривает скол выступающего угла бетонной конструкции. Для него не требуется выполнять высверливание и другие подготовительные работы, но при толщине защитной прослойки менее чем 20мм его использование не допустимо. Применяют скалывание ребра для контроля за линейными конструкциями, такими как ригели и сваи, перемычки и колонны, балки и др.

Метод стальных дисков используют в случаях, когда два предыдущих способа применять не допускается из-за различных ограничений. Он менее трудоемок, но имеет свои недостатки. Дело в том, что металлические диски, которые в дальнейшем необходимо будет оторвать, следует наклеивать до начала испытания за 5-24 часа, в зависимости от вида клеевого состава.

К недостаткам всех трех методов можно отнести:

  • частичное разрушение поверхности;
  • необходимость предварительного определения количества и глубины расположения арматуры;
  • длительность и трудоемкость процесса.

Методы ударного воздействия

Способ неразрушающего контроля методом ударного импульса считается наиболее востребованным, а поэтому – распространенным. Он предусматривает фиксацию энергии удара именно в тот момент, когда боек ударного инструмента соприкасается с бетонной поверхностью. Данный метод позволяет установить класс бетона, измерить его прочность, а также упругость относительно разных углов наклона к испытываемой поверхности. Он помогает выявить зоны недостаточного уплотнения, либо неоднородности структуры материала.

По показателям нескольких замеров производится усреднение показателей, что является окончательным результатом проверки.


Метод упругого отскока включает в себя замеры пути обратного хода ударника после его воздействия на поверхность бетона или прислоненную к ней стальную пластину. При данном варианте контроля кроме прочности материала определяется его твердость, для чего контролирующие приборы комплектуются склерометрами.

Метод пластической деформации предусматривает измерение габаритов отпечатка, оставленного на бетоне после ударения о поверхность стального шарика. Подобный способ является устаревшим, но из-за малой стоимости оборудования он до сих пор остается востребованным.

Ультразвуковой метод

Такой способ контроля позволяет при помощи ультразвука проверять прочностные свойства бетона в пределах всего «тела» конструкции. Кроме этого существует возможность определения:

  • глубины и размера трещин;
  • качества бетонирования;
  • возможных дефектов.


В процессе проведения проверки производится поверхностное и сквозное прозвучивание с использованием специальных датчиков, находящихся с одной или двух-четырех сторон подвергающегося тестированию бетонного изделия. К недостаткам данного вида контроля относится невозможность использования ультразвукового способа для исследования высокопрочных бетонов.

Приборы для измерений

Устройства, использующиеся для проведения неразрушающего контроля, представляют собой приборы, производящие оперативную диагностику состояния материала без нарушения его целостности. В технической литературе их называют приборами неразрушающего контроля с условным обозначением «ПНК».

Измерения производятся в соответствии с нормативами и техническим заданием заказчика. Неразрушающий метод контроля бетона включает в себя проверку следующих параметров:

  • прочности конструкции;
  • твердости материала;
  • наличия внутренних пустот;
  • глубины и качества заделки арматуры;
  • влагонепроницаемости;
  • морозоустойчивости;
  • величины защитной прослойки и др.

ПНК подразделяются на несколько групп.

Измерители прочности

Оборудование производит диагностику бетона на прочность без механических разрушений конструкции в целом. Результаты получаются путем косвенных замеров и перерасчетов полученных величин, непосредственно отвечающих за прочностные характеристики или статически с ними взаимосвязанные. Прочность характеризуется сопротивлением внешним механическим воздействиям путем появления внутренних напряжений, способных противостоять разрушению материала.


К оборудованию, предназначенному для неразрушающего контроля прочности, относятся:

  • механические измерители, позволяющие определять прочностные свойства способом упругого отскока. В зависимости от модели, они производят измерения тонкостенных (до 100мм) и толстостенных (более 100мм) изделий из бетона. В первом случае ПНК имеют уменьшенную энергию удара. Механические приборы отличаются наличием погрешности до 15-20 процентов;
  • электронные измерители способны получить измеряемые величины с высокой долей точности (погрешность менее чем 5 процентов для бетонных изделий со стенками до 100мм). Электронный прибор для измерения прочности бетона используют для стабильного измерения прочностных показателей методами упругого отскока с автоматическим учетом направления и угла наклона измерителя. К тому же, оборудование способно определить степень карбонизации. Данная разновидность ПНК имеет возможность подключения к компьютерной технике;
  • измерители электронного типа с выносными преобразователями. При определении прочности тонкостенных изделий они имеют небольшую погрешность – в пределах пяти процентов. Результаты измерений учитывают процессы карбонизации, а выводятся они в виде графических гистограмм. Допускается производить управление оборудованием через компьютер;
  • электронные измерители, использующие метод ударного импульса и передающие данные непосредственно на компьютер. Приборы имеют 7-15 процентную погрешность и усовершенствованные возможности. Одни модели оснащены самовзводными склерометрами, отвечающими за определение твердости бетона. Они производят удар с усиленной энергией. Другие модели имеют светодиодную индикацию и расширенный тепловой режим;
  • электронные измерители, работающие по методу отрыва со скалыванием. Они представляют собой двухцилиндровый гидравлический пресс, оснащенный опорами и имеющий встроенную электронику;
  • двухпараметрические электронные измерители, сочетающие методы и отскока, и ударного импульса. Их погрешность составляет 8 процентов, а отличаются приборы возможностью внесения оперативных корректировок в процессе работы;
  • ультразвуковые измерители способны определить прочность бетонной глыбы, ее однородность и внутренние дефекты на основании времени и, соответственно, скорости прохождения ультразвука сквозь тело бетона. Исследования и измерения производят на фиксированной прозвучивающей базе. Некоторые модели комплектуются выносными датчиками, другие подключаются к ПК через специальные кабели;
  • микроскоп, предназначающийся для определения величины трещин.

В ходе проводящихся проверок в приборах, производящих неразрушающие методы контроля прочности бетона, происходит изнашивание их механических частей, что влияет на точность результатов измерений. Для проверки соответствия показаний эталонным значениям измерители подвергают периодической диагностической проверке на калибровочных наковальнях.

Измерители твердости

Твердость представляет собой возможность сопротивления материала в случае пластического деформирования или местного воздействия на его поверхность более твердого материала. Данное свойство зависит одновременно от прочности и пластичности бетона, а определяется оно несколькими видами портативных твердомеров:

  • динамическими;
  • цифровыми;
  • ультразвуковыми.

Анализаторы влажности

Под термином «влажность» понимают процентное отношение массы влаги, содержащейся в исследуемом материале, к его массе в сухом или влажном состоянии. Основным направлением использования влагомеров является контроль за влажностью древесины, поэтому первоначально они настроены на показатели древесных пород. При необходимости контроля за бетонными поверхностями изготовители к приборам прилагают инструкции, в которых находятся таблицы соответствия влажности бетона или других материалов к влажности древесины.

Неразрушающий контроль подразумевает измерение не самой влажности, а связанного с ней параметра. В дальнейшем результат «переводят» в показатель влажности.

Влагомеры подразделяются на два основных виды:

  • игольчатые, производящие замеры электрического сопротивления, зависящего от показателя влажности, между погруженными в бетон контактными иглами;
  • бесконтактные, определяющие контролируемые величины на основании затухания электромагнитных волн.

Измерители защитного слоя

Оборудование можно с уверенностью отнести к приборам поиска арматуры. Принцип их действия состоит в искажении электромагнитного сигнала устройства в случае его «встречи» с арматурой, расположенной в теле бетона. В результате, полученные показатели преобразуются в информацию о месторасположении металлического каркаса.


В качестве аппаратуры применяются:

  • локаторы арматуры, использующиеся не только для обнаружения места нахождения стальных стержней, но и для определения размера защитной прослойки;
  • профометры, определяющие место расположения стержней, их диаметр, а также реальное отдаление от поверхности;
  • измерители, помогающие оперативно выявить положение и габариты арматуры, а также толщину защитного бетонного слоя.

Каждый из приборов контроля выполняет предназначенную для него функцию. В целом они создают реальную картину, относящуюся к качеству бетонного изделия, либо конструкции. Все измерители основаны на том или ином методе проверки, но в итоге полученные результаты помогают определить, насколько конструкция остается надежной и прочной.

Рассмотрим некоторые основные методы и приборы определения прочности бетона в конструкциях, которыми пользуются на практике. Определение прочности механическими методами неразрушающего контроля осуществляется согласно , определения прочности ультразвуковым методом неразрушающего контроля осуществляется по , определение прочности по бетонным образцам, выбуренным или выпиленным из конструкций, осуществляется по .

Неразрушающие методы определения прочности на сжатие бетонных конструкций основаны на косвенных характеристиках показаний приборов, основанных на методах упругого отскока, ударного импульса, пластической деформации,отрыва, скалывания ребра и отрыва со скалыванием, скорости прохождения ультразвука. Определение прочности на сжатия по образцам, отобранным из конструкций, подразумевает испытание их на прессе.

Для определения класса и марки бетона в зависимости от прочности сжатия или растяжения, можно использовать табл.6, приложения 1,

СООТНОШЕНИЕ МЕЖДУ КЛАССАМИ БЕТОНА ПО ПРОЧНОСТИ НА СЖАТИЕ И РАСТЯЖЕНИЕ И МАРКАМИ

Таблица 6

Класс бетона по прочности

Средняя прочность бетона ()*, кгс/см2

Ближайшая марка бетона по прочности М

Отклонение ближайшей марки бетона от средней прочности класса, %,

Средняя прочность бетона R рассчитана при коэффициенте вариации V, равном 13,5 %, и обеспеченности- 95 % для всех видов бетона, а для массивных гидротехнических конструкций- при коэффициенте вариации V, равном 17 %, и обеспеченности- 90%.

Методы и приборы неразрушающего контроля

Для определения прочности бетона на сжатие данные показаний необходимо преобразовывать с помощью предварительно установленных градуировочных зависимостей между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы), по методикам, указанным в ГОСТ 22690-88 и по прилагаемым графикам градуировочных зависимостей к приборамб, установленным на заводе-изготовителей прибора.

Испытание прочности приборами неразрушающего контроля выполняют, непосредственно, в местах расположения конструкций, однако, также можно выполнять испытание бетона проб из конструкций. Испытание бетона в пробах рекомендуется для определения его прочности в труднодоступных зонах конструкций и в конструкциях, находящихся при отрицательной температуре. Пробу вмоноличивают в раствор, прочность которого на день испытания должна быть не менее половины прочности бетона пробы (для предотвращения разрушения пробы при испытании). Вмоноличивание проб в раствор удобно производить с использованием стандартных форм, для изготовления бетонных контрольных образцов по . Расположение проб после распалубки представлено на рис.1.

Рис.1. 1 - проба бетона; 2 - наиболее удобная для испытания сторона пробы 3 - раствор, в котором закреплена проба

Обычно приборы поставляются с графиками градуировочной зависимости или с базовыми настройками для тяжелого бетона средних марок. Для обследования конструкций допускается применять методы упругого отскока, ударного импульса или пластической деформации, используя градуировочную зависимость, установленную для бетона, отличающегося от испытываемого (по составу, возрасту, условиям твердения, влажности), с уточнением ее в соответствии с методикой, приведенной в (). Для ультразвуковых приборов требуется градуировка и корректировка согласно , и методических рекомендаций по контролю прочности бетона монолитных конструкций ультразвуковым методом поверхностного прозвучивания.

Градуировочную зависимость "скорость - прочность" устанавливают при испытании конструкций способом сквозного прозвучивания. Градуировочную зависимость "время - прочность" устанавливают при испытании конструкций способом поверхностного прозвучивания.

Допускается при испытании конструкций способом поверхностного прозвучивания использовать градуировочную зависимость "скорость - прочность" с учетом коэффициента перехода, определяемого в соответствии с приложением 3.

Измерение времени распространения ультразвука в бетоне конструкций следует проводить в направлении, перпендикулярном уплотнению бетона. Расстояние от края конструкции до места установки ультразвуковых преобразователей должно быть не менее 30 мм. Измерение времени распространения ультразвука в бетоне конструкций следует проводить в направлении, перпендикулярном направлению рабочей арматуры. Концентрация арматуры вдоль выбранной линии прозвучивания не должна превышать 5 %. Допускается прозвучивание вдоль линии, расположенной параллельно рабочей арматуре, если расстояние от этой линии до арматуры составляет не менее 0,6 длины базы.

Пульсар 1.2.


Рис. 2. Внешний вид прибора
Пульсар-1.2: 1 - вход приемника;
2 - выход излучателя

Прибор состоит из электронного блока (см. рис. 3.2) и ультразвуковых преобразователей - раздельных или объединенных в датчик поверхностного прозвучивания. На лицевой панели электронного блока расположены: 12-ти клавишная клавиатура и графический дисплей. В верхней торцевой части корпуса установлены разъёмы для подключения датчика поверхностного прозвучивания или отдельных УЗ преобразователей для сквозного прозвучивания. На правой торцевой части прибора расположен разъем USB интерфейса. Доступ к аккумуляторам осуществляется через крышку батарейного отсека на нижней стенке корпуса.

Работа прибора основана на измерении времени прохождения ультразвукового импульса в материале изделия от излучателя к приемнику. Скорость ультразвука вычисляется делением расстояния между излучателем и приемником на измеренное время. Для повышения достоверности в каждом измерительном цикле автоматически выполняется 6 измерений и результат формируется путем их статистической обработки с отбраковкой выбросов. Оператор выполняет серию измерений (от 1 до 10 измерений по его выбору), которая также подвергается математической обработке с определением среднего значения, коэффициента вариации, коэффициента неоднородности и с отбраковкой выбросов.

Скорость распространения ультразвуковой волны в материале зависит от его плотности и упругости, от наличия дефектов (трещин и пустот), определяющих прочность и качество. Следовательно, прозвучивая элементы изделий, конструкций и сооружений можно получать информацию о:

  • прочности и однородности;
  • модуле упругости и плотности;
  • наличии дефектов и их локализации.
  • форме А-сигнала

Возможны варианты прозвучивания со смазкой и сухим контактом (протекторы, конусные насадки), см. рис. 3.1.


Рис. 3. Варианты прозвучивания

Прибор осуществляет запись и визуализацию принимаемых УЗК, имеет встроенные цифровые и аналоговые фильтры, улучшающие соотношение «сигнал-помеха». Режим осциллографа позволяет просматривать сигналы на дисплее (в задаваемом масштабах времени и усиления), вручную устанавливать курсор в положение контрольной метки первого вступления. Пользователь имеет возможность вручную изменять усиление измерительного тракта и смещать ось времени для просмотра и анализа сигналов первого вступления и огибающей.

Оформление результатов для методов определения прочности неразрушающего контроля

Результаты испытаний прочности бетона заносят в журнал, в котором должно быть указано:

  • наименование конструкции, номер партии;
  • вид контролируемой прочности и ее требуемое значение;
  • вид бетона;
  • наименование неразрушающего метода, тип прибора и его заводской номер;
  • среднее значение косвенной характеристики прочности и соответствующее значение прочности бетона;
  • сведения об использовании поправочных коэффициентов;
  • результаты оценки прочности бетона;
  • фамилия и подпись лица, проводившего испытание, дата испытания.

Для ультразвукового метода определения прочности нужно воспользоваться формой журнала, установленной в приложениях №8-9,

Определить, насколько эффективно бетонная конструкция будет противостоять внешним нагрузкам, позволяют специальные приборы. С их помощью можно узнать величину прочностных показателей бетона разными способами.

Измеритель прочности бетона используется для расчета предельных нагрузок, которые способен выдержать бетон или кирпич в определенных условиях. Для установления прочностного параметра применяются два метода:

  1. Разрушающий способ позволяет определить величину прочности путем раздавливания образцов в форме кубика, полученных из поверхности бетона, в специальном прессе.
  2. Неразрушающий метод позволяет получить этот параметр без механического разрушения.

Второй способ более популярен. Для этого применяются приборы ударного импульса, упругого отскока, ультразвуковые и с частичным разрушением.

Виды и характеристики

Портативные измерители прочности бетона позволяют точно определить соответствующий параметр с минимальными затратами времени. Существует несколько разновидностей таких механизмов, отличающихся по принципу действия. Приборы наделены определенным набором функций.

Электронные



Электронный склерометр (измеритель прочности бетона) ОНИКС-2.5.

Приборы для электронного измерения прочности отличаются:

  • высокой точностью;
  • способностью зафиксировать до 5 тысяч измерений одновременно;
  • возможностью получения сведений по заранее введенным параметрам;
  • наличием функции передачи информации на компьютер;
  • способностью сортировки данных по заданным характеристикам.

Классифицируются электронные механизмы по принципу воздействия. Основанные на отрыве упругого типа предназначены для измерения прочности образцов толщиной более 10 см. Измерители параметров по импульсу удара отличается низким процентом погрешности - 7%. Двухпараметрическая модификация передает измерения и от удара, и от отрыва. Двухцилиндровые гидропрессы компонуются специальными измерительными опорами, куда вмонтирована вся электронная система. Электронным измерителем вымеряется отрыв со скалыванием.

Склерометры

Устройства для экспресс-анализа измеряют удар стального бойка о бетонную поверхность по импульсу или по величине. Склерометр используется при нехватке сведений о поверхностной прочности, для проведения измерений в условиях, неподходящих для применения других методов. Отличаются агрегаты простотой эксплуатации, высокой скоростью определения по стандартным градуировочным зависимостям. При измерении учитывается вид наполнителя, возраст изделия и условия затвердения камня. Возможна ручная настройка направления удара.

Механические

Механические процессы для измерения прочностных характеристик применяются к легким и тяжелым классам бетона. Предельные показатели устройств, работающих на этом методе, равны 5-100 МПа. Замеры осуществляются на основе показаний, полученных от:

  • величины отскока бойка ударника;
  • энергии удара;
  • размеров полученного следа от бойка.

Предел погрешности механических приборов прочности составляет 15%.

Ультразвуковые

Механизмы ультразвукового действия определяют прочностные показатели при затвердении бетона, отпускную, передаточную прочность. Процесс измерения производится по скорости распределения звуковых колебаний по поверхности бетона, определяемой способами прозвучивания сквозного - датчики располагаются с двух сторон, и плоскостного - датчики находятся с одного бока. Ультразвуковыми устройствами определяют прочность в приповерхностных слоях и в теле бетона. Также их используют при дефектоскопии, для контроля качества цементирования и определения глубины бетонирования. Скорость распространения ультразвука - 4500 м/с. Недостатком является погрешность при пересчете акустических характеристик в прочностные.

Примеры производителей

Российская компания СКБ Стройприбор - популярный производитель измерителей прочности на строительном рынке. Предлагается широкий ассортимент от торговых марок Beton Pro, ADA.


Ипс-мг4.03 используется при определении прочностных показателей тяжелого и , керамзитобетона, шлакопемзобетона, бетонных растворов, кирпича. Принцип действия основан на получении данных от ударного импульса. С учетом условий твердения и возраста материала измеритель Ипс-мг4.03 определяет:

  • физико-механические параметры образца, включая прочностные показатели, твердость, пластичность;
  • величину неоднородности;
  • зоны низкого уплотнения.

Особенности Ипс-мг4.03:

  • возможность ввода коэффициента совпадения для сравнения с градуировочными характеристиками;
  • наличие выбора типа образца;
  • опция определения класса бетона;
  • возможность исключения ошибки измерения;
  • наличие выходов для подключения к компьютеру;
  • объемная память, вмещающая 999 участков и 15 тысяч результатов;
  • возможность ввода градуировочных характеристик вручную;
  • регулировка 100 настроек по выбору типа наполнителя, материала и возраста бетона.

Beton Pro Condtrol

Измеритель прочности бетона beton pro condtrol подходит для оперативного анализа на месте и в целях лабораторного контроля прочностных колебаний, однородности цементного состава, бетонных растворов, кирпича. Принцип действия основан на измерении ударного импульса. Преимущества работы:

  • получение высокоточных величин;
  • удобство эксплуатации;
  • повышенная энергия удара;
  • автозавод ударного механизма;
  • большое количество настроек;
  • наглядность вывода информации;
  • на результат практически не влияют возраст, состав, условия твердения бетона.

В Beto Pro CONDTROL имеется 100 связанных с прочностью градуировочных зависимостей, пять направлений удара, функция присвоения признака исследуемому образцу, память на 5 тысяч измерений с возможностью сортировки и отбраковки полученных величин, выход для подключения к компьютеру, опция постройки диаграммы среднеквадратического отклонения и вариативного коэффициента.

ОНИКС-ОС

Прибор используется для определения прочностных показателей и величин однородности и кирпича. Относится к классу электронных склерометров. Оникс-ОС отличается такими преимуществами:

  • двухпараметрический метод контроля прочностных показателей по ударному импульсу и отскоку, что позволяет получить максимально точные результаты;
  • легкость, компактность и эргономичность;
  • максимальная точность измерительного тракта.

В устройстве реализованы основные градуировочные характеристики с возможностью уточнения на основании коэффициента совпадения. Имеется возможность настройки требуемых параметров измерения и названия образцов. Измерения проводятся с учетом состава, условий упрочнения, карбонизации и возраста бетона. В памяти ОНИКС-ОС сохраняются все результаты измерений, сведения об образцах, вариативные коэффициенты, время и дата исследований. При этом необходимые данные с диаграммами быстро выводятся на подсвечиваемый экран. Оникс-ОС имеет опции автоотключения устройства, автоудаления устаревших данных, определения класса бетона.

NOVOTEST ИПСМ-У Т Д

Ультразвуковой агрегат производит:

  • контроль прочностных параметров бетонов, кирпича и композиционных конструкций;
  • измерение глубины пор, трещин, дефектов в бетоне;
  • контроль плотности с упругостью углеграфитов и стеклопластика;
  • определение возраста бетона.

Особенностью является возможность ручной обработки результатов, отсутствие влияния внешних факторов на точность измерения, сверхчувствительный датчик прозвучивания.

Заключение

Точность измерения прочности современными устройствами позволяет качественно производить ремонтные, строительные работы, мероприятия по укреплению бетонных конструкций.

Полученные данные с измерителей гарантируют правильность выбора дальнейших действий, определения необходимости прибавления бетону прочностных характеристик, что существенно облегчает работу строителей.

Понравилась статья? Поделитесь с друзьями!