Электрическое сопротивление r. Электрическое сопротивление проводника

На сегодняшний день одной из важнейших характеристик любого материала является его электрическое сопротивление. Этот факт объясняется беспрецедентным в истории человечества распространением электрических машин, заставившим по-иному взглянуть на свойства окружающих материалов как искусственного, так и естественного происхождения. Понятие «электрическое сопротивление» стало таким же важным, как теплоемкость и пр. Оно применимо абсолютно ко всему, что нас окружает: вода, воздух, металл, даже вакуум.

Каждый современный человек должен иметь представление о данной характеристике материалов. На вопрос «что же такое электрическое сопротивление» можно ответить лишь в том случае, если известен смысл термина «электрический ток». С этого и начнем…

Материальным проявлением энергии является атом. Все состоит из них, соединенных в группы. Существующая в настоящее время физическая модель утверждает, что атом походит на уменьшенную модель звездной системы. В центре находится ядро, включающее в себя частицы двух типов: нейтроны и протоны. Протон несет электрический положительный заряд. На разных расстояниях от ядра по круговым орбитам вращаются другие частицы - электроны, несущие отрицательный заряд. Количество протонов всегда соответствует количеству электронов, поэтому суммарный заряд равен нулю. Чем удаленнее от ядра находится орбита электрона (валентный), тем слабее сила притяжения, удерживающая его в структуре атоме.

В генерирующей ток машине магнитное поле высвобождает из орбит Так как в утратившего электрон, остается «лишний» протон, то сила притяжения «отрывает» другой валентный электрон из внешней орбиты соседнего атома. В процесс завлекается вся структура материала. В результате появляется движение заряженных частиц (атомов с положительным зарядом и свободных электронов с отрицательным), которое и называется электрическим током.

Материал, в структуре которого электроны внешних орбит могут легко покидать атом, называется проводником. Его электрическое сопротивление мало. Это группа металлов. Например, для производства проводов в основном используют алюминий и медь. По закону Ома электрическое представляет собой отношение созданного генератором напряжения к силе проходящего тока. Кстати, в "Омах".

Легко догадаться, что существуют материалы, в которых валентных электронов очень мало или атомы сильно удалены друг от друга (газ), поэтому их внутренняя структура не может обеспечить прохождение тока. Они носят название диэлектриков и используются для изолирования проводящих линий в электротехнике. Электрическое сопротивление в них очень высоко.

Всем известно, что мокрый диэлектрик начинает проводить электрический ток. В свете этого факта особый интерес приобретает вопрос «существует ли электрическое сопротивление воды». Ответ на него противоречивый: и да, и нет. Как уже указывалось ранее, если в материале валентных электронов практически нет, а сама структура состоит больше из пустоты, чем частиц (вспоминаем таблицу Менделеева и водород с единственным электроном на орбите), то в обычных условиях проводимость существовать не может. Под это описание идеально подходит вода: соединение двух газов, называемое нами жидкостью. И действительно, будучи полностью очищенной от растворенных примесей, она является очень хорошим диэлектриком. Но так как в природе в воде всегда присутствуют растворы солей, то обеспечивается именно ими. На ее уровень влияет насыщенность раствора и температура Вот поэтому однозначного ответа на вопрос быть не может, ведь вода бывает разной.

В физике электрическим сопротивлением называется физическая величина, которая характеризует способность проводника препятствовать протеканию электрического тока.

Что такое электрическое сопротивление

Каждое тело, каждое вещество имеет электрическое сопротивление. Если приложить одно и то же напряжение к разным телам, ток через них потечёт разный, т.к. у них разное сопротивление. Есть вещества, через которые ток вообще не потечёт. Такие вещества называются диэлектриками, а вещества, пропускающие электрический ток, называются проводниками.

Как известно, ток - это направленное движение электронов. Электроны с отрицательного полюса источника напряжения поступают в проводник, там они выбивают из молекулы проводника другие электроны, занимая их место. Электроны как бы передают эстафету от молекулы к молекуле.

Кроме того, в проводниках есть и собственные свободные электроны, не связанные ни с каким определённым атомом. Все эти частицы движутся по проводнику. Поскольку свободные электроны присутствуют во всём объёме проводника, при приложении напряжения электроны моментально достигают положительного полюса.

Молекулы разных веществ с разной силой удерживают свои электроны. Например, у золота выбить частицы проще, чем у меди, и свободных электронов в нём больше, значит, сопротивление золота меньше. Молекулы диэлектриков свои электроны отдают крайне неохотно, поэтому ток через них не течёт.

Как определить величину сопротивления

Способность проводника сопротивляться прохождению тока называется сопротивлением и обозначается буквой R. Сопротивление жёстко связано с током и напряжением. Если к концам проводника с сопротивлением R приложить напряжение U, через него потечёт ток I. R = U/ I. Это называется законом Ома.

В Омах. 1 Ом - это такое сопротивление, через которое при напряжении в 1 Вольт течёт ток в 1 Ампер.

Любой проводник характеризуется удельным сопротивлением ρ. Для каждого проводника это величина неизменная, она указывается в справочниках. Удельное сопротивление - это такое сопротивление, которым обладает проводник длиной l=1 м и площадью сечения S=1 кв.м. Значит, сопротивление R=ρl/S. Чем длиннее проводник, тем сопротивление больше, а с увеличением площади сечения сопротивление падает.

Следует иметь в виду, что при нагреве проводника сопротивление растёт, а при охлаждении, наоборот, падает. При абсолютном нуле (- 273° С) сопротивление близко к нулю. Это явление называется сверхпроводимостью. Удельное сопротивление, которое указывают в справочниках, измеряется в нормальных условиях, т.е. при комнатной температуре.

Внутреннее и внешнее сопротивление

Сопротивлением обладают не только проводники и элементы электрических схем, но и источники напряжения. Собственное сопротивление источника r называется внутренним, а сопротивление нагрузки R - внешним. Ток I через нагрузку от источника течёт от минуса к плюсу, а внутри источника от плюса к минусу, т.е. ток нагрузки равен току внутри источника.

Если на полюсах источника имеется напряжение Е, то его можно определить по формуле Е=IR+Ir. Отсюда можно вычислить и внутреннее, и внешнее сопротивление.

Под электрическим сопротивлением понимается любое противодействие, которое обнаруживает ток при прохождении через замкнутый контур, ослабление или торможение свободного потока электрических зарядов.

Jpg?x15027" alt="Измерение сопротивления мультиметром" width="600" height="490">

Измерение сопротивления мультиметром

Физическое понятие сопротивления

Электроны при прохождении тока циркулируют в проводнике организованным образом в соответствии с сопротивлением, с которым они сталкиваются на своем пути. Чем меньше эта сопротивляемость, тем больше существующий порядок в микромире электронов. Но когда сопротивляемость высокая, они начинают сталкиваться друг с другом и выделять тепловую энергию. В связи с этим, температура проводника всегда немного повышается, на большую величину, чем выше электроны находят противодействия своему движению.

Используемые материалы

Все известные металлы обладают большей или меньшей устойчивостью к прохождению тока, включая лучшие проводники. Наименьшей сопротивляемостью обладают золото и серебро, но они дорогие, поэтому самый часто используемый материал – медь, имеющая высокую электропроводность. В меньших масштабах применяется алюминий.

Наибольшая устойчивость к прохождению тока у нихромной проволоки (сплав никеля (80%) и хрома (20%)). Она широко применяется в резисторах.

Другим широко используемым резисторным материалом является уголь. Из него фиксированные сопротивления и реостаты изготавливаются для использования в электронных схемах. Фиксированные резисторы и потенциометры применяются для регулирования значений тока и напряжения, например, при контроле громкости и тона аудиоусилителей.

Расчет сопротивлений

Для вычисления величины нагрузочного сопротивления формулу, выведенную из закона Ома, используют, как основную, если известны значения тока и напряжения:

Единицей измерения является Ом.

Для последовательного соединения резисторов общее сопротивление находится путем суммирования отдельных значений:

R = R1 + R2 + R3 + …..

При параллельном соединении используется выражение:

1/R = 1/R1 + 1/R2 + 1/R3 + …

А как найти электрическое сопротивление для провода, учитывая его параметры и материал изготовления? Для этого существует другая формула сопротивления:

R = ρ х l/S, где:

  • l – длина провода,
  • S – размеры его поперечного сечения,
  • ρ – удельное объемное сопротивление материала провода.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/2-1-600x417.png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-1-768x533..png 792w" sizes="(max-width: 600px) 100vw, 600px">

Формула сопротивления

Геометрические размеры провода можно измерить. Но чтобы рассчитать сопротивление по этой формуле, надо знать коэффициент ρ.

Важно! Значения уд. объемного сопротивления уже рассчитаны для разных материалов и сведены в специальные таблицы.

Значение коэффициента позволяет сравнивать сопротивление разных типов проводников при заданной температуре в соответствии с их физическими свойствами без учета размеров. Это можно проиллюстрировать на примерах.

Пример расчета электросопротивления медного провода, длиной 500 м:

  1. Если размеры сечения провода неизвестны, можно замерить его диаметр штангенциркулем. Допустим, это 1,6 мм;
  2. При расчетах площади сечения используется формула:

Тогда S = 3,14 х (1,6/2)² = 2 мм²;

  1. По таблице нашли значение ρ для меди, равное 0,0172 Ом х м/мм²;
  2. Теперь электросопротивление рассчитываемого проводника будет:

R = ρ х l/S = 0,0172 х 500/2 = 4,3 Ом.

Другой пример нихромовая проволока сечением 0,1 мм², длиной 1 м:

  1. Показатель ρ для нихрома – 1,1 Ом х м/мм²;
  2. R = ρ х l/S = 1,1 х 1/0,1 = 11 Ом.

На двух примерах наглядно видно, что нихромовая проволока метровой длины и сечением, в 20 раз меньшим, имеет электрическое сопротивление в 2,5 раза больше, чем 500 метров медного провода.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-6-768x381..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Удельное сопротивление некоторых металлов

Важно! На сопротивление оказывает влияние температура, с ростом которой оно увеличивается и, наоборот, уменьшается со снижением.

Импеданс

Импеданс – более общий термин сопротивления, который учитывает реактивную нагрузку. Расчет сопротивления в контуре переменного тока заключается в вычислении импеданса.

В то время, как резистор создает активное сопротивление для решения определенных задач, реактивная составляющая является неудачным побочным продуктом некоторых компонентов электроцепи.

Два типа реактивного сопротивления:

  1. Индуктивное. Создается катушками. Формула расчета:

X (L) = 2π x f x L, где:

  • f – частота тока (Гц),
  • L – индуктивность (Гн);
  1. Емкостное. Создается конденсаторами. Рассчитывается по формуле:

X (C) = 1/(2π x f x C),

где С – емкость (Ф).

Как и активный аналог, реактивное сопротивление выражается в омах и также ограничивает поток тока через контур. Если в цепи присутствует и емкость, и катушка индуктивности, то общее сопротивление равно:

X = X (L) – X (C).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-3.jpg 622w" sizes="(max-width: 600px) 100vw, 600px">

Активное, индуктивное и емкостное сопротивление

Важно! Из формул реактивной нагрузки следуют интересные особенности. С увеличением частоты переменного тока и индуктивности растет X (L). И, наоборот, чем выше частоты и емкость, тем меньше X (С).

Нахождение импеданса (Z ) не является простым складыванием активной и реактивной составляющих:

Z = √ (R² + X²).

Пример 1

Катушка в контуре с током промышленной частоты обладает активным сопротивлением 25 Ом и индуктивностью 0,7 Гн. Вычислить импеданс можно:

  1. X (L) = 2π x f x L = 2 х 3,14 х 50 х 0,7 = 218,45 Ом;
  2. Z = √ (R² + X (L)²) = √ (25² + 218,45²) = 219,9 Ом.

tg φ = X (L)/R = 218,45/25 = 8,7.

Угол φ примерно равен 83 градуса.

Пример 2

Имеется конденсатор емкостью 100 мкФ и внутренним сопротивлением 12 Ом. Вычислить импеданс можно:

  1. X (C) =1/(2π x f x C) = 1/ 2 х 3,14 х 50 х 0, 0001 = 31,8 Ом;
  2. Z = √ (R² + X (С)²) = √ (12² + 31,8²) = 34 Ом.

В интернете можно найти калькулятор онлайн для упрощения вычисления сопротивлений и импеданса всей электроцепи или ее участков. Там нужно просто вести свои расчетные данные и зафиксировать результаты расчета.

Видео

На рисунке 33 изображена электрическая цепь, в которую включена панель с разными проводниками. Эти проводники отличаются друг от друга материалом, а также длиной и площадью поперечного сечения. Подключая по очереди эти проводники и наблюдая за показаниями амперметра, можно заметить, что при одном и том же источнике тока сила тока в разных случаях оказывается различной. С увеличением длины проводника и уменьшением его сечения сила тока в нем становится меньше. Уменьшается она и при замене никелиновой проволоки проволокой такой же длины и сечения, но изготовленной из нихрома. Это означает, что разные проводники оказывают различное противодействие току. Противодействие это возникает из-за столкновений носителей тока со встречными частицами вещества.

Физическая величина, характеризующая противодействие, оказываемое проводником электрическому току, обозначается буквой R и называется электрическим сопротивлением (или просто сопротивлением ) проводника:

R - сопротивление.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который впервые ввел это понятие в физику. 1 Ом - это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А. При сопротивлении 2 Ом сила тока при том же напряжении будет в 2 раза меньше, при сопротивлении 3 Ом - в 3 раза меньше и т. д.

На практике встречаются и другие единицы сопротивления, например килоом (кОм) и мегаом (МОм):

1 кОм= 1000 Ом, 1 МОм= 1 000 ООО Ом.

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и площади поперечного сечения S и может быть найдено по формуле

R = ρl/S (12.1)

где ρ - удельное сопротивление вещества , из которого изготовлен проводник.

Удельное сопротивление вещества - это физическая величина, показывающая, каким сопротивлением обладает сделанный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы (12.1) следует, что

Так как в СИ единицей сопротивления является 1 Ом, единицей площади 1 м 2 , а единицей длины 1 м, то единицей удельного сопротивления в СИ будет

1 Ом · м 2 /м, или 1 Ом · м.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм 2). В этом случае более удобной единицей удельного сопротивления является Ом·мм 2 /м. Так как 1 мм 2 = 0,000001 м 2 , то

1 Ом · мм 2 /м = 0,000001 Ом · м.

У разных веществ удельные сопротивления различны. Некоторые из них приведены в таблице 3.

Приведенные в этой таблице значения соответствуют температуре 20 °С. (С изменением температуры сопротивление вещества изменяется.) Например, удельное сопротивление железа равно 0,1 Ом · мм 2 /м. Это означает, что если изготовить из железа провод с площадью сечения 1 мм 2 и длиной 1 м, то при температуре 20 °С он будет обладать сопротивлением 0,1 Ом.

Из таблицы 3 видно, что наименьшим удельным сопротивлением обладают серебро и медь. Значит, именно эти металлы являются наилучшими проводниками электричества.

Из той же таблицы видно, что, наоборот, такие вещества, как фарфор и эбонит, обладают очень большим удельным сопротивлением. Это и позволяет использовать их в качестве изоляторов.

1. Что характеризует и как обозначается электрическое сопротивление? 2. По какой формуле находится сопротивление проводника? 3. Как называется единица сопротивления? 4. Что показывает удельное сопротивление? Какой буквой оно обозначается? 5. В каких единицах измеряют удельное сопротивление? 6. Имеются два проводника. У какого из них больше сопротивление, если они: а) имеют одинаковую длину и площадь сечения, но один из них сделан из константана, а другой - из фехраля; б) сделаны из одного и того же вещества, имеют одинаковую толщину, но один из них в 2 раза длиннее другого; в) сделаны из одного и того же вещества, имеют одинаковую длину, но один из них в 2 раза тоньше другого? 7. Проводники, рассматриваемые в предыдущем вопросе, поочередно подключают к одному и тому же источнику тока. В каком случае сила тока будет больше, в каком меньше? Проведите сравнение для каждой пары рассматриваемых проводников.

— электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это .

Единица измерения электрического сопротивления — Ом . Обозначается буквой R. Зависимость сопротивления от тока и в замкнутой цепи определяется .

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

(С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

(L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление — это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материало в

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p — удельное сопротивление (единицы измерения ом*м/мм 2);

l — длина проводника (м);

S — поперечное сечение (мм 2).

Понравилась статья? Поделитесь с друзьями!