Капилляры: строение, механизмы регуляции проницаемости эндотелия кровеносных сосудов. Гипотеза Старлинга-Лэндиса о фильтрационно-реабсорбционном равновесии

Согласно классической теории Э. Старлинга (1896), нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидноосмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением (рис. 12-45), в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости. Гидростатическое давление крови в артериальном конце капилляра кожи человека составляет 30-32 мм рт.ст., а в венозном конце - 8-10 мм рт.ст.

Установлено, что давление тканевой жидкости является величиной отрицательной. Она на 6-7 мм рт.ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство.

Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление (ЭГД) - разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное ~ 36 мм рт.ст. (30 - (-6)). В венозном конце капилляра величина ЭГД соответствует 14 мм рт.ст.

Удерживают воду в сосудах белки, концентрация которых в плазме крови (60-80 г/л) создает коллоидно-осмотическое давление, равное 25-28 мм рт.ст. Определенное количество белков содержится в межтканевых жидкостях. Коллоидно-осмотическое

Обмен жидкости между различными частями капилляра и тканью (по Э. Старлингу): pa - нормальный перепад гидростатического давления между артериальным (30 мм рт.ст.) и венозным (8 мм рт.ст.) концом капилляра; bc - нормальная величина онкотического давления крови (28 мм рт.ст.). Влево от точки A (участок Ab) происходит выход жидкости из капилляра в окружающие ткани, вправо от точки А (участок Ac) происходит ток жидкости из ткани в капилляр (А1 - точка равновесия). При повышении гидростатического давления (p"a") или снижении онкотического давления (b"c") точка A смещается в положение А1 и А2. В этих случаях переход жидкости из ткани в капилляр затрудняется и возникает отек

давление интерстициальной жидкости для большинства тканей составляет ~ 5 мм рт.ст. Белки плазмы крови удерживают воду в сосудах, белки тканевой жидкости - в тканях. Эффективная онкотическая всасывающая сила (ЭОВС) - разность между величиной коллоидно-осмотического давления крови и межтканевой жидкости. Она составляет ~ 23 мм рт. ст. (28-5). Если эта сила превышает величину эффективного гидростатического давления, то жидкость будет перемещаться из интерстициального пространства в сосуды. Если ЭОВС меньше ЭГД, обеспечивается процесс ультрафильтрации жидкости из сосуда в ткань. При выравнивании величин ЭОВС и ЭГД возникает точка равновесия А (см. рис. 12-45).



В артериальном конце капилляров (ЭГД = 36 мм рт.ст., а ЭОВС = 23 мм рт.ст.) сила фильтрации преобладает над эффективной онкотической всасывающей силой на 13 мм рт.ст. (36-23). В точке равновесия А эти силы выравниваются и составляют 23 мм рт.ст. В венозном конце капилляра ЭОВС превосходит эффективное гидростатическое давление на 9 мм рт.ст. (14 - 23 = -9), что определяет переход жидкости из межклеточного пространства в сосуд.

По Э. Старлингу, имеет место равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, возвращающейся в сосуд в венозном конце капилляра. Как показывают расчеты, такого равновесия не происходит: сила фильтрации в артериальном конце капилляра равна 13 мм рт.ст., а всасывающая сила в венозном конце капилляра -9 мм рт.ст. Это должно приводить к тому, что в каждую единицу времени через артериальную часть капилляра в окружающие ткани жидкости выходит больше, чем возвращается обратно. Так оно и происходит - за сутки из кровяного русла в межклеточное пространство переходит около 20 л жидкости, а обратно через сосудистую стенку возвращается только 17 л. Три литра транспортируется в общий кровоток через лимфатическую систему. Это довольно существенный механизм возврата жидкости в кровяное русло, при повреждении которого могут возникать так называемые лимфатические отеки.

Д.Н. Проценко

Проценко Денис Николаевич,

Доцент кафедры анестезиологии и реаниматологии ФУВ РГМУ,

ОРИТ ГКБ №7б Москва

В 1896 г британский физиолог Э. Старлинг (Starling, Ernest Henry, 1866-1927) разработал концепцию об обмене жидкостями между кровью капилляров и интерстициальной жидкостью тканей 1.

Kfc - коэффициент фильтрации в капилляре

P - гидростатическое давление

П - онкотическое давление

Sd - коэффициент отражения (от 0 до 1; 0 - капилляр свободно проницаем для белка, 1 - капилляр непроницаем для белка)

Согласно этой концепции в норме существует динамическое равновесие между объёмами жидкости, фильтрующейся в артериальном конце капилляров и реабсорбирующейся в их венозном конце (или удаляемой лимфатическими сосудами). Первая часть уравнения (гидростатическая) характеризует силу, с которой жидкость стремится проникнуть в интерстициальное пространство, а вторая (онкотическая) - сила, удерживающая ее в капилляре. Примечательно, что альбумин обеспечивает 80% онкотического давления, что связано с его относительно малой молекулярной массой и большим количеством молекул в плазме2. Коэффициент фильтрации - есть результат взаимодействия между площадью поверхности капилляра и проницаемости его стенки (гидравлической проводимости). В случае развития синдрома капиллярной "утечки" - коэффициент фильтрации возрастает. Вместе с тем в клубочковых капиллярах этот коэффициент высокий в норме, благодаря чему обеспечивается функция нефрона.

Таблица 1

Средние показатели "Старлинговских сил", мм рт.ст.

Таблица 2

Средние показатели "Старлинговских сил" в клубочковых капиллярах, мм рт.ст.

Безусловно, использование закона Э. Старлинга для прикроватной оценки клинической ситуации невозможно, так как невозможно измерить его шесть составляющих, но именно этот закон позволяет понять механизм развития отека в той или иной ситуации. Так у больных с острым респираторным дистресс-синдромом (ОРДС) основной причиной развития отека легких является повышенная проницаемость капилляров легких.

Микроциркуляция в почках, легких и головном мозге имеет ряд особенностей, в первую очередь связанных с законом Э. Старлинга.

Наиболее яркие особенности микроциркуляции имеются в клубочковой системе почек. У здорового человека ультрафильтрация превышает реабсорбцию в среднем на 2-4 литра в сутки. При этом клубочковая фильтрация (GFR) составляет в норме 180 л/сутки. Такой высокий показатель определяется следующими особенностями:

Высокий коэффициент фильтрации (как за счет повышенной гидравлической проводимости, так и за счет большой площади поверхности капилляров),

Высоком коэффициенте отражения (около 1,0), т.е. стенка клубочковых капилляров фактически не проницаема для белка,

Высоким гидростатическим давлением в капилляре клубочков,

Массивная экстравазация жидкости с одной стороны и отсутствие проницаемости для белка с другой определяют высокий градиент онкотического давления в клубочковом капилляре (что в дальнейшем является основной движущей силой реабсорбции).

Таким образом, закон Э. Старлинга для клубочков выглядит следующим образом: GFR = Kf x (PGC - PBC - pGC), а давление в клубочковом капилляре зависит от разницы давления в афферентной и эфферентной частях артериолы.

Основная функция системы внешнего дыхания - поглощение кислорода из окружающей среды (оксигенация) и удаление из организма двуокиси углерода (вентиляция). Легочные артерии и вены повторяют ветвление бронхиального дерева, определяя тем самым большую площадь поверхности, где происходит газообмен (альвеолярно-капиллярная мембрана). Такая анатомическая особенность позволяет максимально реализовывать газообмен.

Основными особенностями микроциркуляции в легких являются:

Наличие альвеолярно-капиллярной мембраны, которая максимально обеспечивает диффузию газов,

Сопротивление сосудов легких невысокое, а давление в малом круге кровообращения значительно ниже, чем в большом круге, и способно обеспечить кровоток в апикальных отделах легких у человека в вертикальном положении,

Гидростатическое давление (PC) составляет 13 мм рт.ст. (в артериоле) и 6 мм рт.ст. (в венуле), но этот показатель подвержен влиянию силы тяжести, особенно в вертикальном положении,

Интерстициальное гидростатическое давление (Pi) - варьирует около нуля,

Онкотическое давление в легочных капиллярах 25 мм рт.ст.,

Онкотическое давление в интерстиции составляет 17 мм рт.ст. (определено на основании анализа лимфы, оттекающей от легких).

Высокое онкотическое интерстициальное давление в норме является следствием высокой проницаемости альвеолярно-капиллярной мембраны для белка (главным образом альбумина). Коэффициент отражения в легочных капиллярах составляет 0,5. Давление в легочном капилляре идентично альвеолярному давлению. Однако экспериментальные исследования продемонстрировали, что давление в интерстиции отрицательное (около - 2 мм рт.ст.), что определяет движение жидкости из интерстициального пространства в лимфатическую систему легких.

Выделяют следующие механизмы, предотвращающие развитие отека легких:

Увеличение скорости лимфотока,

Снижение интерстициального онкотического давления (механизм не работает в ситуации, когда повреждается эндотеллий),

Высокий комплайнс интерстиция, т.е способность интерситиция удерживать значительный объем жидкости без увеличения интерстициального давления.

Гематоэнцефалический барьер : В отличие от капилляров в других органах и тканях эндотелиальные клетки сосудов мозга связаны вместе непрерывными плотными соединениями. Эффективные поры в церебральных капиллярах достигают всего 7А, делая эту структуру непроницаемой для больших молекул, относительно непроницаемой для ионов и свободно проходимой для воды. В связи с этим мозг является исключительно чувствительным осмометром: снижение осмолярности плазмы приводит к увеличению отечности мозга, и наоборот, увеличение осмолярности плазмы снижает содержание воды в ткани мозга. Важно помнить, что даже небольшие изменения осмолярности вызывают существенные изменения: градиент в 5 мосмоль/кг эквивалентен силе перемещения воды равной 100 мм рт.ст. Если же ГЭБ поврежден, то поддержание осмотического и онкотического градиента очень сложно. При некоторых патологических условиях проницаемость ГЭБ нарушается так, что плазменные белки проникают во внеклеточное пространство мозга с последующим развитием отека3.

Исследования с изменением осмоляльности и онкотического давлений продемонстрировали:

Снижение осмоляльности приводит к развитию отека мозга,

Снижение онкотического давления приводит к отеку периферических тканей, но не мозга,

При ЧМТ снижение осмоляльности приводит к отеку в той части мозга, которая оставалась нормальной,

Есть основания полагать, что снижение онкотического давления не приводит к усилению отека в поврежденной части мозга

1 Starling E. H. On the absorption of fluid from connective tissue spaces. J Physiol (London). 1896;19:312-326.

2 Weil MH, Henning RJ, Puri VK: Colloid oncotic pressure: clinical significance. Crit Care Med 1979, 7:113-116.

3 Pollay M, Roberts PA. Blood-brain barrier: a definition of normal and altered function. Neurosurgery 1980 6(6):675-685

Подробности

ЗАКОН ФРАНКА- СТАРЛИНГА («закон сердца»):

Чем больше мышца сердца растянута поступающей кровью, тем больше сила сокращения и тем больше крови поступает в артериальную систему.

Закон Франка-Старлинга обеспечивает:

  • приспособление работы желудочков сердца к увеличению нагрузки объемом;
  • «уравнивание» производительности левого и правого желудочков сердца (в единицу времени в большой и малый круги кровообращения поступает одинаковое количество крови)

Влияние величины сердечного выброса на АД, приток и отток крови от сердца.

От величины сердечного выброса зависят два условия выполнения адекватной текущим задачам нутритивной функции системы кровообращения: обеспечение оптимального количества циркулирующей крови и поддержание (совместно с сосудами) определенного уровня среднего артериального давления (70-90 мм рт. ст.), необходимого для удержания физиологических констант в капиллярах (25-30 мм рт. ст.). При этом обязательным условием нормальной работы сердца является равенство притока крови по венам и ее выброса в артерии. Решение этой задачи обеспечивается, в основном, механизмами, обусловленными свойствами самой сердечной мышцы. Проявление этих механизмов называют миогенной ауторегуляцией насосной функции сердца. Существуют два способа ее реализации: гетерометрическая - осуществляется в ответ на изменения исходной длины волокон миокарда, гомеометрическая - происходит при их сокращениях в изометрическом режиме.

Миогенные механизмы регуляции деятельности сердца. Закон Франка-Старлинга.

Изучение зависимости силы сокращений сердца от растяжения его камер показало, что сила каждого сердечного сокращения зависит от величины венозного притока и определяется конечной диастолической длиной волокон миокарда. Эта зависимость получила название гетерометрическая регуляция сердца и известна как закон Франка-Старлинга : «Сила сокращения желудочков сердца, измеренная любым способом, является функцией длины мышечных волокон перед сокращением», т. е. чем больше наполнение камер сердца кровью, тем больше сердечный выброс. Установлена ультраструктурная основа этого закона, заключающаяся в том, что количество актомиозиновых мостиков является максимальным при растяжении каждого саркомера до 2,2 мкм.

Увеличение силы сокращения при растяжении волокон миокарда не сопровождается увеличением длительности сокращения, поэтому указанный эффект одновременно означает увеличение скорости нарастания давления в камерах сердца во время систолы.
Инотропные влияния на сердце, обусловленные эффектом Франка- Старлинга , играют ведущую роль в увеличении сердечной деятельности при усиленной мышечной работе, когда сокращающиеся скелетные мышцы вызывают периодическое сжатие вен конечностей, что приводит к увеличению венозного притока за счет мобилизации резерва депонированной в них крови.

Отрицательные инотропные влияния по указанному механизму играют существенную роль в изменениях кровообращения при переходе в вертикальное положение (ортостатическая проба). Эти механизмы имеют большое значение для согласования изменений сердечного выброса и притока крови по венам малого круга, что предотвращает опасность развития отека легких.

Гомеометрическая регуляция работы сердца.

Термином «гомеометрическая регуляция » обозначают миогенные механизмы, для реализации которых не имеет значения степень конечно-диастолического растяжения волокон миокарда. Среди них наиболее важным является зависимость силы сокращения сердца от давления в аорте (эффект Анрепа) и хроно-инотропная зависимость. Этот эффект состоит в том, что при увеличении давления «на выходе» из сердца сила и скорость сердечных сокращений возрастают, что позволяет сердцу преодолевать возросшее сопротивление в аорте и поддерживать оптимальным сердечный выброс.

Водно-электролитный обмен характеризуется чрезвычайным постоянством, которое поддерживается антидиуретическим и антинатрийуретическими системами. Реализация функций этих систем осуществляется на уровне почек. Стимулирование антинатрийуритической системы происходит вследствии рефлекторного влияния волюморецепторов правого предсердия (уменьшение объема крови) и понижения давления в почечной приводящей артерии, усиливается продукция гормона надпочечников- альдостерона. Кроме того, активация секреции альдостерона осуществляется через ренин-ангиотензивную систему. Альдостерон усиливает реабсорбцию натрия в канальцах почек. Повышение осмолярности крови «включает» антидиуретическую систему через раздражение осморецепторов гипоталомической области головного мозга и увеличение выхода вазопрессина (антидиуретического гормона). Последний усиливает реабсорбцию воды канальцами нефронов.

Оба механизма функционируют постоянно и обеспечивают восстановление водно- электролитного гомеостаза при кровопотере, обезвоживании, избытке воды в организме, а также изменения осмотической концентрации солей и жидкости в тканях.

Одним из узловых моментов нарушения водно-солевого обмена являются изменения интенсивности обмена жидкости в системе кровеносный капилляр - ткани. Согласно закону Старлинга, за счет преобладания величины гидростатического над коллоидно-осмотическим давлением в артериальном конце капилляра, происходит фильтрация жидкости в ткани, а в венозном конце микроциркуляторного русла фильтрат реабсорбируется. Жидкость и белок, выходящие из кровеносных капилляров, реабсорбируются из преваскулярного пространства также и в лимфатические сосуды. Ускорение или замедление обмена жидкости между кровью и тканями опосредуется через изменение проницаемости сосудов, гидростатического и коллоидно-осмотического давления в кровеносном русле и тканях. Увеличение фильтрации жидкости приводит к уменьшению ОЦК, что вызывает раздражение осморецепторов и включает гормональное звено: увеличение выработки альдестерона и увеличение АДГ. АДГ увеличивает реабсорбцию воды, гидростатическое давление увеличивается, что увелиичивает фильтрацию. Создается порочный круг.

4. Общий патогенез отеков. Роль гидростатического, онкотического, осмотического, лимфогенного и мембранного факторов в развитии отеков.

Обмен жидкости между сосудами и тканями происходит через капиллярную стенку. Эта стенка представляет собой достаточно сложно устроенную биологическую структуру, через которую относительно легко транспортируются вода, электролиты, некоторые органические соединения (мочевина), но значительно труднее - белки. В результате этого концентрации белков в плазме крови (60-80 г/л) и тканевой жидкости (10-30 г/л) неодинаковы.

Согласно классической теории Э. Старлинга (1896) нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидно- осмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением, в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости.

Гидростатическое давление крови в артериальном конце капилляра кожи человека составляет 30-32 мм рт. ст. (Ланджи), а в венозном конце - 8-10 мм рт. ст.

В настоящее время установлено, что давление тканевой жидкости является величиной отрицательной. Она на 6-7 мм рт. ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство.

Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление (ЭГД) - разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное * 36 мм рт. ст. (30 - (-6). В венозном конце капилляра величина ЭГД соответствует 14 мм рт. ст. (8- (-6).

Удерживают воду в сосудах белки, концентрация которых в плазме крови (60-80 г/л) создает коллоидно-осмотическое давление, равное 25-28 мм рт. ст. Определенное количество белков содержится в межтканевых жидкостях. Коллоидно-осмотическое давление интерстициальной жидкости для большинства тканей составляет я 5 мм рт. ст. Белки плазмы крови удерживают воду в сосудах, белки тканевой жидкости - в тканях.

Эффективная онкотическая всасывающая сила (ЭОВС) - разность между величиной коллоидно-осмотического давления крови и межтканевой жидкости. Она составляет м 23 мм рт. ст. (28 - 5). Если эта сила превышает величину эффективного гидростатического давления, то жидкость будет перемещаться из интерстициаль-ного пространства в сосуды. Если ЭОВС меньше ЭГД, обеспечивается процесс ультрафильтрации жидкости из сосуда в ткань. При выравнивании величин ЭОВС и ЭГД возникает точка равновесия А (см. рис. 103). В артериальном конце капилляров (ЭГД = 36 мм рт. ст., а ЭОВС = 23 мм рт. ст.) сила фильтрации преобладает над эффективной онкотической всасывающей силой на 13 мм рт. ст. (36-23). В точке равновесия А эти силы выравниваются и составляют 23 мм рт. ст. В венозном конце капилляра ЭОВС превосходит эффективное гидростатическое давление на 9 мм рт. ст. (14-23 = -9), что определяет переход жидкости из межклеточного пространства в сосуд.

По Э. Старлингу, имеет место равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, возвращающейся в сосуд в венозном конце капилляра. Как показывают расчеты, такого равновесия не происходит: сила фильтрации в артериальном конце капилляра равна 13 мм рт. ст., а всасывающая сила в венозном конце капилляра - 9 мм рт. ст. Это должно приводить к тому, что в каждую единицу времени через артериальную часть капилляра в окружающие ткани жидкости выходит больше, чем возвращается обратно. Так оно и происходит - за сутки из кровяного русла в межклеточное пространство переходит около 20 л жидкости, а обратно через сосудистую стенку возвращается только 17л. Три литра транспортируется в общий кровоток через лимфатическую систему. Это довольно существенный механизм возврата жидкости в кровяное русло, при повреждении которого могут возникать так называемые лимфатические отеки.

В развитии отеков играют роль следующие патогенетические факторы:

1. Гидростатический фактор. При возрастании гидростатического давления в сосудах увеличивается сила фильтрации, а также поверхность сосуда (А; в, а не Ав, как в норме), через которую происходит фильтрация жидкости из сосуда в ткань. Поверхность же, через которую осуществляется обратный ток жидкости (А, с, а не Ас, как в норме), уменьшается. При значительном повышении гидростатического давления в сосудах может возникнуть такое состояние, когда через всю поверхность сосуда осуществляется ток жидкости только в одном направлении - из сосуда в ткань. Происходит накопление и задержка жидкости в тканях. Возникает так называемый механический, или застойный, отек. По такому механизму развиваются отеки при тромбофлебитах, отеки ног у бе- ременных. Этот механизм играет существенную роль при возникновении сердечных отеков и т.д.

2. Коллоидно-осмотический фактор . При уменьшении величины онкотического давления крови возникают отеки, механизм развития которых связан с падением вели- чины эффективной онкотической всасывающей силы. Белки плазмы крови, обладая высокой гид-рофильностью, удерживают воду в сосудах и, кроме того, в силу значительно более высокой концентрации их в крови по сравнению с межтканевой жидкостью стремятся перевести воду из межтканевого пространства в кровь. Помимо этого увеличивается поверхность сосудистой площади (в"А2, а не вА, как в норме), через которую происходит процесс фильтрации жидкости при одновременном уменьшении резорбционной поверхности сосудов (А2 с", а не Ас, как в норме).

Таким образом, существенное уменьшение величины онкотического давления крови (не менее чем на l/З) сопровождается выходом жидкости из сосудов в ткани в таких количествах, которые не успевают транспортироваться обратно в общий кровоток, даже несмотря на компенсаторное усиление лимфообращения. Происходит задержка жидкости в тканях и формирование отека.

Впервые экспериментальные доказательства значения онкотического фактора в развитии отеков были получены Э. Старлингом (1896). Оказалось, что изолированная лапа

собаки, через сосуды которой перфузировали изотонический раствор поваренной соли, становилась отечной и прибавляла в массе. Масса лапы и отечность резко уменьшались при замене изотоническогораствора поваренной соли на белковосодержащии раствор сыворотки крови.

Онкотический фактор играет важную роль в происхождении многих видов отеков: почечных (большие потери белка через почки), печеночных (снижение синтеза белков), голодных, ка-хектических и др. По механизму развития такие отеки называются онкотическими.

3. Проницаемость капиллярной стенки. Увеличение проницаемости сосудистой стенки способствует возникновению и развитию отеков. Такие отеки по механизму развития называются мембраногенными. Однако повышение проницаемости сосудов может привести к усилению как процессов фильтрации в артериальном конце капилляра, так и резорбции в венозном конце. При этом равновесие между фильтрацией и резорбцией воды может и не нарушаться. Поэтому здесь большое значение имеет повышение проницаемости сосудистой стенки для белков плазмы крови, вследствие чего падает эффективная онкотическая всасывающая сила в первую очередь за счет увеличения онкотического давления тканевой жидкости. Отчетливое повышение проницаемости капиллярной стенки для белков плазмы крови отмечается, например, при остром воспалении - воспалительный отек. Содержание белков в тканевой жидкости при этом резко нарастает в первые 15-20 мин после действия патогенного фактора, стабилизируется в течение последующих 20 мин, а с 35-40-й мин начинается вторая волна увеличения концентрации белков в ткани, связанная, по-видимому, с нарушением лимфотока и затруднением транспорта белков из очага воспаления. Нарушение проницаемости сосудистых стенок при воспалении связано с накоплением медиаторов повреждения, а также с расстройством нервной регуляции тонуса сосудов.

Проницаемость сосудистой стенки может повышаться при действии некоторых экзогенных химических веществ (хлор, фосген, дифосген, люизит и др.), бактериальных токсинов (дифтерийный, сибиреязвенный и др.), а также ядов различных насекомых и пресмыкающихся (комары, пчелы, шершни, змеи и др.). Под влиянием воздействия этих агентов, помимо повышения проницаемости сосудистой стенки, происходит нарушение тканевого обмена и образование продуктов, усиливающих набухание коллоидов и повышающих осмотическую концентрацию тканевой жидкости. Возникающие при этом отеки называются токсическими.

К мембраногенным отекам относятся также нейрогенные и аллергические отеки.

Подробности

Микроциркуляторное русло представляет собой систему мелких кровеносных сосудов и состоит из:

  • капиллярной сети – сосудов с внутренним диаметром 4-8 мкм;
  • артериол - сосудов с диаметром до 100 мкм;
  • венул - сосудов, калибра несколько большего, чем артериолы.

Микроциркуляция ответственна за регуляцию кровотока в отдельных тканях и обеспечивает процессы обмена газов и низкомолекулярных соединений между кровью и тканями.
Примерно 80% общего падения кровяного давления происходит именно в прекапиллярном отделе микроциркуляторного русла.

Капилляры (обменные сосуды).

В стендке капилляров всего один слой эндотелия (обмен газами, водой, растворенными веществами). Диаметр 3-10 мкм. Это наименьший просвет, через который еще могут "протиснуться" эритроциты. В то же время более крупные лейкоциты могут "застревать" в капиллярах и тем самым блокировать кровоток.

Кровоток (1 мм/c) неоднороден и зависит от степени сокращения артериол. В стенках артериол имеется слой гладкомышечных клеток (в метартериолах этот слой становится уже не сплошным), который заканчивается гладкомышечным кольцом - прекапиллярным сфинктером. Благодаря иннервации гладких мышц артериол, и особенно гладкомышечного сфинктера в области перехода артерий в артериолы, осуществляется регуляция кровотока в каждом капиллярном русле. Большая часть артериол иннервируется симпатической нервной системой, и лишь некоторые из этих сосудов - например, в легких -парасимпатической.

В стенках капилляров нет соединительной ткани и гладких мышц . Они состоят лишь из одного слоя эндотелиальных клеток и окружены базальной мембраной из коллагена и мукополисахаридов. Часто капилляры разделяют на артериальные, промежуточные и венозные; у венозных капилляров просвет несколько шире, чем у артериальных и промежуточных.

Венозные капилляры переходят в посткапиллярные венулы (мелкие сосуды, окруженные базальной мембраной), которые в свою очередь открываются в венулы мышечного типа и далее - в вены. В венулах и венах имеются клапаны, причем гладкомышечная оболочка появляется после первого посткапиллярного клапана.

Закон Лапласа: малый диаметр - малое давление. Перенос веществ через стенки капилляра.

Стенки капилляров тонкие и хрупкие. Однако, согласно закону Лапласа , из-за малого диаметра капилляров напряжение в их стенке, необходимое для противодействия растягивающему эффекту кровяного давления, должно быть невелико. Через стенки капилляров, посткапиллярных венул и в меньшей степени метартериол происходит перенос веществ из крови в ткани, и наоборот. Благодаря особым свойствам эндотелиальной выстилки этих стенок они на несколько порядков более проницаемы для различных веществ, чем слои эпителиальных клеток. В некоторых тканях (например, в мозге) стенки капилляров гораздо менее проницаемы, чем, например, в костной ткани и печени. Таким различиям в проницаемости соответствуют и существенные различия в строении стенок.

Очень хорошо изучены капилляры скелетных мышц. Толщина эндотелиальных стенок этих сосудов составляет около 0,2-0,4 мкм. При этом между клетками имеются щели, минимальная ширина которых равна приблизительно 4 нм. В эндотелиалъных клетках содержится множество пиноцитозных пузырьков с диаметром порядка 70 нм.

Ширина межклеточных щелей в эндотелиальном слое составляет около 4 нм, однако через них могут проходить лишь молекулы гораздо меньших размеров. Это говорит о том, что в щелях имеется какой-то дополнительный фильтрующий механизм. В одной и той же капиллярной сети межклеточные щели могут быть различными и в посткапиллярных венулах они обычно шире, чем в артериальных капиллярах. Это имеет определенное физиологическое значение : дело в том, что кровяное давление, служащее движущей силой для фильтрации жидкости через стенки, снижается в направлении от артериального к венозному концу сети капилляров.

При воспалении или действии таких веществ, как гистамин, брадикинин, простагландины и др., ширина межклеточных щелей в области венозного конца сети капилляров увеличивается и проницаемость их значительно возрастает. В капиллярах печени и костной ткани межклеточные щели всегда широки. Кроме того, в этих капиллярах в отличие от фенестрированного эндотелия базальная мембрана не сплошная, а с отверстиями в области межклеточных щелей. Ясно, что в таких капиллярах транспорт веществ идет главным образом через межклеточные щели. В связи с этим состав тканевой жидкости, окружающей капилляры печени, почти такой же, как у плазмы крови.

В некоторых капиллярах с менее проницаемой эндотелиальной стенкой (например, в легких) определенную роль в ускорении переноса различных веществ (в частности, кислорода) могут играть пульсовые колебания давления. При повышении давления жидкость "выдавливается" в стенку капилляров, а при понижении - возвращается в кровеносное русло. Такое пульсовое "промывание" стенок капилляров может способствовать перемешиванию веществ в эндотелиальном барьере и тем самым существенно увеличивать их перенос.

Давление крови в артериальном конце капилляра 35 мм рт.ст , в венозном конце – 15 мм рт.ст .
Скорость движения крови в капиллярах 0.5-1 мм/сек .
Эритроциты в капиллярах движутся по одному , друг за другом, с небольшими интервалами.

В наиболее узких капиллярах происходит деформация эритроцитов . Таким образом, движение крови по капиллярам зависит от свойств эритроцитов и от свойств эндотелиальной стенки капилляра. Оно наилучшим образом приспособлено для эффективного газообмена и обмена веществ между кровью и тканями.

Фильтрация и реабсорбция в капиллярах.

Обмен происходит с участием пассивных (фильтрация, диффузия, осмос) и активных механизмов транспорта . Так, например, фильтрация воды и растворенных в ней веществ происходит в артериальном конце капилляра, т.к. гидростатическое давление крови (35 мм рт.ст) больше онкотического давления (25 мм рт.ст; создается белками плазмы, удерживает воду в капилляре). В венозном конце капилляра происходит реабсорбция воды и растворенных в ней веществ, т.к. гидростатическое давление крови уменьшается до 15 мм рт.ст и становится меньше, чем онкотическое давление.

Капиллярная активность и механизмы гиперемии.

В условиях покоя функционирует только часть капилляров (так называемые «дежурные» капилляры), остальные капилляры являются резервными. В условиях повышенной активности органа число работающих капилляров увеличивается в несколько раз (например, в скелетной мышце при сокращении). Увеличение кровоснабжения активно работающего органа называется рабочей гиперемией .

Механизм рабочей гиперемии : повышение уровня метаболизма активно работающего органа приводит к накоплению метаболитов (СО2, молочная кислота, продукты расщепления АТФ и др.). В этих условиях происходит расширение артериол и прекапиллярных сфинктеров, кровь поступает в резервные капилляры и объемный кровоток в органе увеличивается. Движение крови в каждом капилляре остается на прежнем оптимальном уровне.

Обменный кровоток – через капилляры.

Шунтирующий кровоток – в обход капилляра (от артериального к венозному отделу кровообращения). Физиологическое шунтирование – кровоток через капилляры, но без обмена.

Вазоактивная роль капиллярного эндотелия.

  • простациклин из АА под действием пульсирующего кровотока – shear stress (цАМФ → расслабление)
  • NO – фактор релаксации. Эндотелий под действием Ach, брадикинина, АТФ, серотонина, вещества Р, гистамина выделяет NO → активация гуанилатциклазы → цГМФ → ↓Ca in → расслабление.
  • эндотелин → сужение сосудов.
Понравилась статья? Поделитесь с друзьями!