Что представляет из себя углеводный обмен в организме? Расшифровка анализа углеводного обмена веществ Переваривание и усвоение.

Наше тело — сложнейший механизм и лаборатория одновременно. Все процессы в нём уникально точны и взвешены. Вот например: углеводный обмен в организме человека. Какова его регуляция и как его можно улучшить?

Всем привет, с вами Светлана Морозова. Каждый из нас хочет быть здоровым и красивым, давайте посмотрим, что нужно знать, чтоб быть ближе к желаемому.

Друзья! Я, Светлана Морозова, приглашаю вас на мега полезные и интересные вебинары! Ведущий, Андрей Ерошкин. Эксперт по восстановлению здоровья, дипломированный диетолог.

Темы предстоящих вебинаров:

  • Как похудеть без силы воли и чтобы вес не вернулся снова?
  • Как снова стать здоровым без таблеток, естественным способом?
  • Откуда берутся камни в почках и что делать, чтобы они не появлялись снова?
  • Как перестать ходить по гинекологам, родить здорового ребёнка и не состариться в 40 лет?

Что происходит

Углеводный обмен в организме человека (У.о.) — это взаимосвязанный ряд процессов изменения углеводов в теле любой живой особи.

И начинается он с первой секунды, как только пища попала в ротовую полость. Она пережёвывается и смачивается слюной, а содержащийся в слюне фермент амилаза начинает расщепление крахмала. Поэтому очень важно тщательно пережёвывать пищу и не торопиться за обедом.

Основное расщепление углеводов происходит в кишечнике — в его тонком отделе. Там сложные соединения (полисахариды) расщепляются до простых (моносахариды) и доставляются кровотоком к нуждающимся органам и тканям.

Часть моносахаридов (глюкоза) откладывается в печеночных клетках запасом гликогена. Скорость проникновения глюкозы зависит от проницаемости клеточных оболочек. Например, клетки печени её очень легко воспринимают, а у мышц во время работы, проницаемость клеточных мембран увеличивается. Но когда мышцы остаются в покое глюкоза проникает в них с трудом, с затратой дополнительной энергии.

Гликоген в мышцах, как и в печени, является своеобразным неприкосновенным запасом на случай голода или усиленной работы. При работе мышц, с помощью фермента фосфорилазы, запасы гликогена расщепляются и освобождают энергию для мышечного сокращения.

Процесс этот может происходить при недостаточном количестве кислорода (анаэробно), тогда он называется гликолиз. При этой реакции одна молекула глюкозы расщепляется на две молекулы АТФ и две молекулы молочной кислоты (которая может накапливаться в мышцах, а при большом её скоплении — вызывать болезненные ощущения). При хорошем снабжении кислородом молочная кислота не образуется, конечные продукты реакции, помимо АТФ становятся Н 2 О и СО 2 .

Конечно, если рассматривать эти реакции с точки зрения профессиональной медицины, всё гораздо сложнее, но мы не будем заглубляться и приводить здесь сложнейшие биохимические схемы.

Кто этим управляет

Кратко можно сказать, что регулирует все процессы У.о. гормоны и ЦНС.

Вырабатываемый в поджелудочной железе, инсулин действует на накопление в и мышцах гликогена. Глюкагон, его антагонист, производимый в той же железе, напротив, вызывает расщепление гликогена до глюкозы. Этому же помогает и адреналин (гормон мозгового вещества надпочечников), а также кортизон, гидрокортизон (гормоны коры надпочечников). В углеводном обмене участвует и соматотропный гормон (выделяемый гипофизом) и гормоны щитовидной железы.

Управляет всем — центральная нервная система.

С возрастом уровень глюкозы в крови немного меняется. Так, например, у детей до 14 лет это 3,5 — 5,6 ммоль/л, у взрослых — 3,2 — 5,5, а у людей старше 60 лет — 4,6 — 6,4.

Для чего нужен углеводный обмен в организме человека?

Бывали случаи, когда на начальных стадиях этого заболевания вышеприведённых мер было достаточно, чтобы остановить его нарушение. Лечения медикаментами уже не требовалось.

Лечение инсулином вам назначит только врач. Этот препарат вводится с помощью инъекций, увы, таблетки от сахарного диабета ещё не изобрели, хотя есть таблетированные сахароснижающие средства и их широко рекламируют на различных презентациях.

Внимание бодибилдерам!

Чтобы испытать тяжёлые последствия нарушения У.о. не обязательно иметь хронические заболевания. Бывает, что работающие мышцы потратили всю глюкозу, тогда она начинает поступать в кровь из печени. Если запасы закончились и в ней, печень начинает синтезировать гликоген из белков и жиров.

При очень тяжёлой изматывающей работе весь гликоген может израсходоваться и возникнет состояние гипогликемии (пониженного содержания сахара в крови).

Оно может сопровождаться бледностью, дрожью, потливостью, слабостью, аритмией сердца, головной болью, головокружениями и пр. Поэтому при больших нагрузках и занятиях спортом особенно важно полноценное питание.

Надеюсь, что вы, дорогие мои читатели, будете правильно питаться и вести активный образ жизни и никакие нарушения У.о. вас никогда не коснуться!

На сегодня всё.

Углеводы являются органическими, водорастворимыми веществами. Они состоят из углерода, водорода и кислорода, с формулой (CH 2 O) n , где ‘n’ может варьировать от 3 до 7. Углеводы содержатся главным образом в растительных продуктах (за исключением лактозы).

Исходя из химической структуры, углеводы делятся на три группы:

  • моносахариды
  • олигосахариды
  • полисахариды

Типы углеводов

Моносахариды

Моносахариды являются «основными единицами» углеводов. Число атомов углерода отличает эти основные единицы друг от друга. Суффикс «оза» используется для определения этих молекул в категорию сахаров:

  • триоза - моносахарид с 3 атомами углерода
  • тетроза - моносахарид с 4 атомами углерода
  • пентоза - моносахарид с 5 атомами углерода
  • гексоза - моносахарид с 6 атомами углерода
  • гептоза - моносахарид с 7 атомами углерода

В группу гексозы входят глюкоза, галактоза и фруктоза.

  • Глюкоза, также известный как сахар, содержащийся в крови, является тем сахаром, в который превращаются все другие углеводы в организме. Глюкоза может быть получена путем пищеварения или образована в результате глюконеогенеза.
  • Галактоза в свободном виде не встречается, а чаще в сочетании с глюкозой в молочном сахаре (лактозе).
  • Фруктоза, известная также как фруктовый сахар, является самым сладким из простых сахаров. Как и следует из названия, большое количество фруктозы содержится во фруктах. В то время как определенное количество фруктозы попадает непосредственно в кровь из пищеварительного тракта, в печени она рано или поздно превращается в глюкозу.

Олигосахариды

Олигосахариды состоят из 2–10 связанных между собой моносахаридов. Дисахариды, или двойные сахара, образуются из двух моносахаридов, связанных между собой.

  • Лактоза (глюкоза + галактоза) - единственный вид сахаров, который не встречается в растениях, а содержится в молоке.
  • Мальтоза (глюкоза + глюкоза) - встречается в пиве, крупах и прорастающих семенах.
  • Сахароза (глюкоза + фруктоза) - известный как столовый сахар, это наиболее распространенный дисахарид, поступающий в организм вместе с пищей. Он содержится в свекловичном сахаре, тростниковом сахаре, меде и кленовом сиропе.

Моносахариды и дисахариды образуют группу простых сахаров.

Полисахариды

Полисахариды образуются из 3 до 1000 моносахаридов, связанных между собой.

Типы полисахаридов:

  • Крахмал - растительная форма хранения углеводов. Крахмал существует в двух формах: амилозы или аминопектина. Амилоза представляет собой длинную неразветвленную цепь спирально закрученных молекул глюкозы, в то время как амилопектин - это сильно разветвленная группа связанных моносахаридов.
  • Пищевые волокна - это некрахмальный структурный полисахарид, который встречается в растениях и обычно трудно переваривается. Примерами пищевых волокон являются целлюлоза и пектин.
  • Гликоген - 100–30.000 соединенных вместе молекул глюкозы. Форма хранения глюкозы.

Переваривание и усвоение

Большинство углеводов мы потребляем в форме крахмала. Переваривание крахмала начинается во рту под действием амилазы слюны. Этот процесс переваривания с помощью амилазы продолжается в верхней части желудка, затем действие амилазы блокируется желудочной кислотой.

Процесс переваривания затем завершается в тонкой кишке с помощью амилазы поджелудочной железы. В результате расщепления крахмала амилазой образуются дисахарид мальтоза и короткие разветвленные цепочки глюкозы.

Эти молекулы, представленные теперь в форме мальтозы и коротких разветвленных цепочек глюкозы, далее будут расщеплены на отдельные молекулы глюкозы с помощью ферментов в клетках эпителия тонкой кишки. Те же процессы происходят при переваривании лактозы или сахарозы. В лактозе нарушена связь между глюкозой и галактозой, в результате чего образуются два отдельных моносахарида.

В сахарозе связь между глюкозой и фруктозой нарушена, в результате чего образуются два отдельных моносахарида. Отдельные моносахариды затем поступают через кишечный эпителий в кровь. При поглощении моносахаридов (таких, как декстроза, которая является глюкозой) переваривания не требуется, и всасываются они быстро.

Попав в кровь, эти углеводы, теперь в форме моносахаридов, используются по назначению. Поскольку фруктоза и галактоза в конечном итоге превращаются в глюкозу, далее я буду ссылаться на все переваренные углеводы, обозначая их как «глюкозу».

Усвоенная глюкоза

Усваиваясь, глюкоза является основным источником энергии (во время или сразу после приема пищи). Эта глюкоза катаболизируется клетками, чтобы получить энергию для образования АТФ. Глюкоза также может накапливаться в форме гликогена в мышцах и клетках печени. Но перед этим необходимо, чтобы глюкоза попала в клетки. Кроме того, глюкоза поступает в клетку различным образом в зависимости от типа клеток.

Чтобы усвоиться, глюкоза должна попасть в клетку. В этом ей помогают транспортеры (Glut-1, 2, 3, 4 и 5). В клетках, где глюкоза является основным источником энергии, например, в мозге, почках, печени и эритроцитах, поглощение глюкозы происходит свободно. Это означает, что глюкоза может поступить в эти клетки в любое время. В жировых клетках, сердце и скелетных мышцах, с другой стороны, поглощение глюкозы регулируется транспортером Glut-4. Их деятельность контролирует гормон инсулин. Реагируя на повышенный уровень глюкозы в крови, из бета-клеток поджелудочной железы высвобождается инсулин.

Инсулин связывается с рецептором на мембране клетки, которая, с помощью различных механизмов, приводит к транслокации рецепторов Glut-4 из внутриклеточных хранилищ к клеточной мембране, позволяя глюкозе попасть в клетку. Сокращение скелетных мышц также усиливает транслокацию транспортера Glut-4.

При сокращении мышц высвобождается кальций. Это увеличение концентрации кальция стимулирует транслокацию рецепторов GLUT-4, способствуя поглощению глюкозы при недостатке инсулина.

Хотя эффекты инсулина и физической нагрузки на транслокацию Glut-4 являются аддитивными, они независимы. Оказавшись в клетке, глюкоза может быть использована для удовлетворения энергопотребностей или синтезирована в гликоген и сохранена для дальнейшего использования. Глюкоза также может быть преобразована в жир и храниться в жировых клетках.

Попав в печень, глюкоза может быть использована для удовлетворения энергетических потребностей печени, сохранена в виде гликогена или преобразована в триглицериды для хранения в виде жира. Глюкоза является предшественником фосфата глицерина и жирных кислот. Печень преобразует избыток глюкозы в фосфат глицерина и жирные кислоты, которые затем соединяются для синтеза триглицеридов.

Некоторые из этих образованных триглицеридов хранятся в печени, но большинство из них вместе с белками переходят в липопротеины и секретируется в кровь.

Липопротеины, которые содержат намного больше жира, чем белка, называют липопротеинами очень низкой плотности (ЛОНП). Эти ЛОНП затем транспортируется через кровь в жировую ткань, где будут храниться как триглицериды (жиры).

Накопленная глюкоза

В организме глюкоза хранится в виде полисахарида гликогена. Гликоген состоит из сотен связанных друг с другом молекул глюкозы и хранится в мышечных клетках (около 300 граммов) и печени (около 100 граммов).

Накопление глюкозы в виде гликогена называется гликогенезом. Во время гликогенеза молекулы глюкозы поочередно добавляются в существующую молекулу гликогена.

Количество запасенного в организме гликогена определяется потреблением углеводов; у человека на низкоуглеводной диете гликогена будет меньше, чем у человека на диете с высоким содержанием углеводов.

Для использования накопленного гликогена он должен быть расщеплен на отдельные молекулы глюкозы в ходе процесса, который называемый гликогенолизом (лиз = расщепление).

Значение глюкозы

Для нормального функционирования глюкоза необходима нервной системе и головному мозгу, поскольку мозг использует его в качестве основного источника топлива. При недостаточном обеспечении глюкозой в качестве источника энергии мозг может также использовать кетоны (побочные продукты неполного распада жиров), но это скорее рассматривается как запасной вариант.

Скелетные мышцы и все другие клетки используют глюкозу для своих энергетических потребностей. Когда в организм с пищей не поступает необходимое количество глюкозы, в ход идет гликоген. После того, как запасы гликогена будут исчерпаны, организм вынужден найти способ, чтобы получить больше глюкозы, что достигается путем глюконеогенеза.

Глюконеогенезом является формирование новой глюкозы из аминокислот, глицерина, лактаты или пирувата (всех неглюкозных источников). Для того чтобы получить аминокислоты для глюконеогенеза, может быть катаболизирован мышечный белок. При обеспечении необходимым количеством углеводов глюкоза служит «сберегателем белка» и может предотвратить расщепление мышечного белка. Поэтому спортсменам так важно употреблять достаточное количество углеводов.

Хотя для углеводов не существует определенной нормы потребления, считается, что 40–50% потребляемых калорий должно поставляться углеводами. Для спортсменов это предполагаемая норма составляет 60%.

Что такое АТФ?

Аденозинтрифосфат, молекула АТФ содержит макроэргические фосфатные связи и используется для хранения и высвобождения необходимой организму энергии.

Как и по многим другим вопросам, люди продолжают спорить по поводу необходимого организму количества углеводов. Для каждого человека оно должно определяться с учетом разнообразных факторов, включая: тип тренировок, интенсивность, продолжительность и частоту, общее количество потребляемых калорий, цели тренировок и желаемый результат с учетом конституции тела.

Краткие выводы

  • Углеводы = (CH2O)n, где n варьирует от 3 до 7.
  • Моносахариды являются «основными единицами» углеводов
  • Олигосахариды состоят из 2–10 связанных между собой моносахаридов
  • Дисахариды, или двойные сахара, образуются из двух моносахаридов, связанных между собой, к дисахаридам относится сахароза, лакроза и галактоза.
  • Полисахариды образуются из 3 до 1000 моносахаридов, связанных между собой; к ним относятся крахмал, пищевые волокна и гликоген.
  • В результате расщепления крахмала образуется мальтоза и короткие разветвленные цепочки глюкозы.
  • Чтобы усвоиться, глюкоза должна попасть в клетку. Это осуществляется транспортерами глюкозы.
  • Гормон инсулин регулирует работу транспортеров Glut-4.
  • Глюкоза может быть использована для образования АТФ, сохранена в форме гликогена или жира.
  • Рекомендуемая норма потребления углеводов - 40–60% от общего числа калорий.

Обменные процессы углеводов в человеческом организме играют важную роль. К тому же они выполняют множество функций, основной из которых остаётся энергетическая.

Многим известно, что углеводы – это органические соединения, которые представляют собою главный источник энергии. Однако только ли в снабжении энергией заключена основная роль углеводов в организме человека? Бесспорно, нет. В человеческом теле все процессы не просто имеют значение, но они практически всегда взаимосвязаны. Так, углеводы, которые находятся во всех тканях, могут существовать свободно или же в форме объединений с белками и жирами. Поэтому если нарушается обмен углеводов, то это неизменно потянет за собою сбои в других обменах. Но для чего ещё нужны углеводы, каково их значение и функции?

Значение и функции углеводов

Углеводы – это превалирующая часть рациона человека. Они поддерживают, по сути, всё жизнеобеспечение тела, предоставляют более 50% дневной энергетической ценности еды и именно потому их доставляется в 2 раза больше, чем иных веществ. Следует отметить, что по мере возрастания нагрузки на мышцы, увеличивается и количество потребляемых углеводов.

Тем не менее они нужны не только как восполнители энергетических затрат. Наряду с белками и жирами, они являются «строительным материалом» для клеток, из-за их присутствия становится возможным продуцирование аминокислот и нуклеиновых кислот, а также они обеспечивают нужное количество гликогена и глюкозы. Так что их значение велико.

Важно знать, что углеводы являются составляющей частью всех живых организмов, обуславливая специфику их построения. Они включают объединения, имеющие различные и порою существенно отличные функции. Если же говорить про функции самих углеводов, то они сводятся к таким:

  • основной источник энергии;
  • контролирует обмен белков и липидов;
  • обеспечивает работу мозга;
  • выполняют функции продуцирования молекул АТФ, ДНК и РНК;
  • совместно с белками осуществляют синтез некоторых гормонов, ферменты, секретов;
  • нерастворимые волокна углеводов способствуют улучшению работы ЖКТ;
  • также клетчатка выводит токсические вещества, а пектин активизирует пищеварение.

Хотя углеводы сложно назвать незаменимыми, тем не менее их дефицит приводит к уменьшению резерва гликогена в печени и к жировым отложениям в её клетках. Подобные процессы не только влияют на функционирование печени, но и способны вызвать её жировое перерождение.

Но это далеко не все патологии, которые наблюдаются при недостаче углеводов. Так что они являются обязательными элементами рациона, поскольку не только обеспечивают энергетические затраты организма, но и принимают участие в клеточном метаболизме.

Виды углеводов

Применяется различная типология углеводов и их структурных составляющих. Немалое количество людей разделяют их на 2 основные подгруппы – простые и сложные. Однако по своим химическим составляющим они образуют 3 подгруппы:

  • моносахариды;
  • олигосахариды;
  • полисахариды.

Моносахариды могут иметь одну молекулу сахара или же их может быть две (дисахариды). Они включают глюкозу, фруктозу, сахарозу и прочие вещества. По большому счёту, они не расщепляются, и в неизменном виде попадают в кровь, что приводит к скачкам уровня сахара. Олигосахариды – это углеводы, для которых характерно превращение путём гидролиза в небольшое число моносахаридов (от 3 до 10).

Полисахариды образовываются множеством моносахаридов. К ним относят крахмалы, декстрины и клетчатку. Их превращение в ЖКТ занимает продолжительное время, что позволяет добиться стабильного уровня сахара в крови без инсулиновых скачков, которые вызывают обычные моносахариды.

Хотя их распад происходит в пищеварительном тракте, однако его преобразования начинаются ещё во рту. Слюна вызывает частичное их превращение в мальтозу и именно поэтому так важно тщательно пережёвывать пищу.

Углеводный обмен

Безусловно, ведущая роль углеводов – обеспечение энергетического резерва. Находящаяся в крови глюкоза – это главный источник энергии. Скорость её расщепления, окисления и вероятность сверхбыстрого изъятия из депо, гарантируют мгновенное использование запасов при физических и психических перегрузах.

Углеводный обмен – это то объединение процессов, что делает возможным превращение углеводов в теле человека. Преобразования углеводов стартуют во рту, где крахмал расщепляется под воздействием фермента амилазы. Главный углеводный обмен происходит уже в кишечнике, где и можно наблюдать превращение полисахаридов в моносахариды, что с кровью доставляются в ткани. Но их львиная доля сосредотачивается в печени (гликоген).

Вместе с кровью глюкоза направляется к тем органам, которым эти поступления больше всего нужны. Тем не менее скорость доставки глюкозы в клетки прямо пропорциональна проницаемости мембран клеток.

Так, в клетки печени она попадает легко, а в мышцы лишь при дополнительной энергозатрате. Но проницаемость оболочек увеличивается, когда мышцы работают.

Глюкоза, находясь в клетках, может превращаться как анаэробно (без кислорода), так и аэробно (с кислородом). В первом случае, то есть при гликолизе, глюкоза расщепляется на аденозинтрифосфат и молочную кислоту. При пентозном цикле, окончательными продуктами её разложения будут углекислый газ, вода и резерв энергии в виде АТФ.

Важно помнить: обменные процессы всех главных питательных веществ связаны, так что вероятны их взаимопревращения в неких рамках. Обмен углеводов, белков и липидов в определённый момент предполагает образование промежуточных веществ, совместных для всех обменных процессов (ацетилкоэнзим А). С его помощью обмен всех важных питательных веществ приводит к циклу трикарбоновых кислот, что способствует высвобождению до 70% энергии.


Дефицит и избыток углеводов

Как уже упоминалось, недостаток углеводов приводит к перерождению печени. Но это далеко не всё. При недостатке углеводов происходит расщепление не только жиров, страдают и мышцы. Вдобавок в крови начинают скапливаться кетоны, чья высокая концентрация способна окислить внутреннюю среду тела и вызвать интоксикацию тканей мозга.

Избыточное количество углеводов тоже губительно. В начальной стадии оно вызывает повышенное содержание сахара в крови, что перегружает поджелудочную железу. Регулярное злоупотребление простыми углеводами истощает её, что может стать причиной развития сахарного диабета обоих типов.

Но даже если этого не произойдёт, какая та часть углеводов всё равно не будет переработана, а превратится в жир. А ожирение уже тянет за собою другие недуги, к примеру, атеросклероз и сопутствующие ему сердечно-сосудистые заболевания. Вот почему так важно знать меру во всём, ведь от этого напрямую зависит здоровье.

В течение жизни человек съедает около 10 т углеводов. Углеводы поступают в организм главным образом в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Особенно богата углеводами растительная пища: хлеб, крупы, овощи, фрукты. Продукты животного происхождения (за исключением молока) содержат мало углеводов.

Углеводы - главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счет углеводов. Конечные продукты обмена углеводов - углекислый газ и вода.

Обмен углеводов занимает центральное место в обмене веществ и энергии. Сложные углеводы пищи подвергаются расщеплению в процессе пищеварения до моносахаридов, в основном глюкозы. Моносахариды всасываются из кишечника в кровь и доставляются в печень и другие ткани, где включаются в промежуточный обмен. Часть поступившей глюкозы в печени и скелетных мышцах откладывается в виде гликогена либо используется для других пластических процессов. При избыточном поступлении углеводов с пищей они могут превращаться в жиры и белки. Другая часть глюкозы подвергается окислению с образованием АТФ и выделением тепловой энергии. В тканях возможны два основных механизма окисления углеводов - без участия кислорода (анаэробно) и с его участием (аэробно).

Углеводы и их функции

Углеводы - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии. Функции углеводов в организме:

· Углеводы являются непосредственным источником энергии для организма.

· Участвуют в пластических процессах метаболизма.

· Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды. Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза). Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза). Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).

Расщепление углеводов в организме

Расщепление сложных углеводов пищи начинается в ротовой полости под действием ферментов амилазы и мальтазы слюны. Оптимальная активность этих ферментов проявляется в щелочной среде. Амилаза расщепляет крахмал и гликоген, а мальтаза -- мальтозу. При этом образуются более низкомолекулярные углеводы -- декстрины, частично -- мальтоза и глюкоза.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена. Процесс всасывания моносахаридов в кишечнике регулируется нервной и гормональной системами. Под действием нервной системы может измениться проницаемость кишечного эпителия, степень кровоснабжения слизистой оболочки кишечной стенки и скорость движения ворсинок, в результате чего меняется скорость поступления моносахаридов в кровь воротной вены. В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150--200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря -- пищевой. Ее результатом является глюкозурия, т. е. выделение глюкозы с мочой, которое наступает в том случае, если уровень глюкозы в крови повышается до 8,9-- 10,0 ммоль/л (160--180 мг%).

При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков.

По мере убыли глюкозы в крови происходят расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови

Гликоген откладывается также в мышцах, где его содержится около 1--2%. Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания. При работе мышц под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Захват глюкозы разными органами из притекающей крови неодинаков: мозг задерживает 12% глюкозы, кишечник-- 9%, мышцы -- 7%, почки -- 5% (Е. С. Лондон).

Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до СО2 и Н2O. Повышение температуры окружающей среды до 35--40 °С угнетает, а понижение до 25 °С -- усиливает всасывание углеводов, что связано, по-видимому, со стимуляцией энергетического обмена углеводов.

Регуляция обмена углеводов

Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4--6,7 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Роль коры головного мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин -- гормон, вырабатываемый в-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или сахарное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клетками островковой ткани поджелудочной железы; адреналин -- гормон мозгового слоя надпочечников; глюкокортикоиды -- гормоны коркового слоя надпочечника; соматотропный гормон гипофиза; тироксин и трийодтиронин -- гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».

Углеводы - обязательный и наиболее значительный компонент пищи. В сутки человек потребляет 400–600 г различных углеводов.

Как необходимый участник метаболизма, углеводы включены практически во все виды обмена веществ: нуклеиновых кислот (в виде рибозы и дезоксирибозы), белков (например, гликопротеинов), липидов (например, гликолипидов), нуклеозидов (например, аденозина), нуклеотидов (например, АТФ, АДФ, АМФ), ионов (например, обеспечивая энергией их трансмембранный перенос и внутриклеточное распределение).

Как важный компонент клеток и межклеточного вещества, углеводы входят в состав структурных белков (например, гликопротеинов), гликолипидов, гликозаминогликанов и других.

Как один из главных источников энергии, углеводы необходимы для обеспечения жизнедеятельности организма. Наиболее важны углеводы для нервной системы. Ткань мозга использует примерно 2/3 всей глюкозы, поступающей в кровь.

Типовые формы нарушений

Расстройства метаболизма углеводов объединяют в несколько групп их типовых форм патологии: гипогликемии, гипергликемии, гликогенозы, гексоз‑ и пентоземии, агликогенозы (рис. 8–1).

Рис. 8–1. Типовые формы нарушения углеводного обмена.

Гипогликемии

Гипогликемии - состояния, характеризующиеся снижением уровня глюкозы плазмы крови (ГПК) ниже нормы (менее 65 мг%, или 3,58 ммоль/л). В норме ГПК натощак колеблется в диапазоне 65–110 мг%, или 3,58–6,05 ммоль/л.

Причины гипогликемии

Причины гипогликемии представлены на рис. 8–2.

Рис. 8–2. Причины гипогликемии.

Патология печени

Наследственные и приобретённые формы патология печени - одна из наиболее частых причин гипогликемии. Гипогликемия характерна для хронических гепатитов, циррозов печени, гепатодистрофий (в том числе иммуноагрессивного генеза), для острых токсических поражений печени, для ряда ферментопатий (например, гексокиназ, гликогенсинтетаз, глюкозо–6‑фосфатазы) и мембранопатий гепатоцитов. К гипогликемии приводят нарушения транспорта глюкозы из крови в гепатоциты, снижение активности гликогенеза в них и отсутствие (или малое содержание) депонированного гликогена.

Нарушения пищеварения

Нарушения пищеварения - полостного переваривания углеводов, а также их пристеночного расщепления и абсорбции - приводят к развитию гипогликемии. Гипогликемия развивается также при хронических энтеритах, алкогольном панкреатите, опухолях поджелудочной железы, синдромах нарушенного всасывания.

Причины нарушений полостного переваривания углеводов

† Недостаточность  ‑амилазы поджелудочной железы (например, у пациентов с панкреатитами или опухолями железы).

† Недостаточное содержание и/или активность амилолитических ферментов кишечника (например, при хронических энтеритах, резекции кишечника).

Причины нарушений пристеночного расщепления и абсорбции углеводов

† Недостаточность дисахаридаз, расщепляющих углеводы до моносахаридов - глюкозы, галактозы, фруктозы.

† Недостаточность ферментов трансмембранного переноса глюкозы и других моносахаридов (фосфорилаз), а также белка–переносчика глюкозы GLUT5.

Патология почек

Гипогликемия развивается при нарушении реабсорбции глюкозы в проксимальных канальцах нефрона почек. Причины:

Дефицит и/или низкая активность ферментов (ферментопатия, энзимопатия), участвующих в реабсорбции глюкозы.

Нарушение структуры и/или физико‑химического состояния мембран (мембранопатии) вследствие дефицита или дефектов мембранных гликопротеинов, участвующих в реабсорбции глюкозы (подробнее см. в приложении «Справочник терминов», статья «Переносчики глюкозы» на компакт-диске).

Названные причины приводят к развитию синдрома, характеризующегося гипогликемией и глюкозурией («почечный диабет»).

Эндокринопатии

Основные причины развития гипогликемии при эндокринопатиях: недостаток эффектов гипергликемизирующих факторов или избыток эффектов инсулина.

К гипергликемизирующим факторам относят глюкокортикоиды, йодсодержащие гормоны щитовидной железы, СТГ, катехоловые амины и глюкагон.

Глюкокортикоидная недостаточность (например, при гипокортицизме вследствие гипотрофии и гипоплазии коры надпочечников). Гипогликемия развивается в результате торможения глюконеогенеза и дефицита гликогена.

Дефицит тироксина (T 4) и трийодтиронина (T 3) (например, при микседеме). Гипогликемия при гипотиреозах является результатом торможения процесса гликогенолиза в гепатоцитах.

Недостаток СТГ (например, при гипотрофии аденогипофиза, разрушении его опухолью, кровоизлиянии в гипофиз). Гипогликемия при этом развивается в связи с торможением гликогенолиза и трансмембранного переноса глюкозы.

Дефицит катехоламинов (например, при туберкулёзе с развитием надпочечниковой недостаточности). Гипогликемия при дефиците катехоламинов является следствием пониженной активности гликогенолиза.

Недостаток глюкагона (например, при деструкции  ‑клеток поджелудочной железы в результате иммунной аутоагрессии). Гипогликемия развивается в связи с торможением глюконеогенеза и гликогенолиза.

Избыток инсулина и/или его эффектов

Причины гипогликемии при гиперинсулинизме:

† активация утилизации глюкозы клетками организма,

† торможение глюконеогенеза,

† подавление гликогенолиза.

Указанные эффекты наблюдаются при инсулиномах или передозировке инсулина.

Углеводное голодание

Углеводное голодание наблюдается в результате длительного общего голодания, в том числе - углеводного. Дефицит в пище только углеводов не приводит к гипогликемии в связи с активацией глюконеогенеза (образование углеводов из неуглеводных веществ).

Длительная значительная гиперфункция организма при физической работе

Гипогликемия развивается при длительной и значительной физической работе в результате истощения запасов гликогена, депонированного в печени и скелетных мышцах.

Клинические проявления гипогликемиИ

Возможные последствия гипогликемии (рис. 8–3): гипогликемическая реакция, синдром и кома.

Рис. 8–3. Возможные последствия гипогликемии.

Гипогликемическая реакция

Гипогликемическая реакция - острое временное снижение ГПК до нижней границы нормы (как правило, до 80–70 мг%, или 4,0–3,6 ммоль/л).

Причины

† Острая избыточная, но преходящая секреция инсулина через 2–3 сут после начала голодания.

† Острая чрезмерная, но обратимая секреция через несколько часов после нагрузки глюкозой (с диагностической или лечебной целью, переедания сладкого, особенно у лиц пожилого и старческого возраста).

Проявления

† Низкий уровень ГПК.

† Лёгкое чувство голода.

† Мышечная дрожь.

† Тахикардия.

Указанные симптомы в покое выражены слабо и выявляются при дополнительной физической нагрузке или стрессе.

Гипогликемический синдром

Гипогликемический синдром - стойкое снижение ГПК ниже нормы (до 60–50 мг%, или 3,3–2,5 ммоль/л), сочетающееся с расстройством жизнедеятельности организма.

Проявления гипогликемического синдрома приведены на рис. 8–4. По происхождению они могут быть как адренергическими (обусловленными избыточной секрецией катехоламинов), так и нейрогенными (вследствие расстройств функций ЦНС).

Рис. 8–4. Проявления гипогликемического синдрома.

Гипогликемическая кома

Гипогликемическая кома - состояние, характеризующееся падением ГПК ниже нормы (как правило, менее 40–30 мг%, или 2,0–1,5 ммоль/л), потерей сознания, значительными расстройствами жизнедеятельности организма.

Механизмы развития

Нарушение энергетического обеспечения нейронов, а также клеток других органов вследствие:

† Недостатка глюкозы.

† Дефицита короткоцепочечных метаболитов свободных жирных кислот - ацетоуксусной и  ‑гидрооксимасляной, которые эффективно окисляются в нейронах. Они могут обеспечить нейроны энергией даже в условиях гипогликемии. Однако, кетонемия развивается лишь через несколько часов и при острой гипогликемии не может быть механизмом предотвращения энергодефицита в нейронах.

† Нарушения транспорта АТФ и расстройств использования энергии АТФ эффекторными структурами.

Повреждение мембран и ферментов нейронов и других клеток организма.

Дисбаланс ионов и воды в клетках: потеря ими K + , накопление H + , Na + , Ca 2+ , воды.

Нарушения электрогенеза в связи с указанными выше расстройствами.

Принципы терапии гипогликемий

Принципы устранения гипогликемического синдрома и комы: этиотропный, патогенетический и симптоматический

Этиотропный

Этиотропный принцип направлен на ликвидацию гипогликемии и лечение основного заболевания.

Ликвидация гипогликемии

Введение в организм глюкозы:

В/в (для устранения острой гипогликемии одномоментно 25–50 г в виде 50% раствора. В последующем инфузия глюкозы в меньшей концентрации продолжается до восстановления сознания у пациента).

С пищей и напитками. Это необходимо в связи с тем, что при в/в введении глюкозы не восстанавливается депо гликогена в печени (!).

Терапия основного заболевания, вызвавшего гипогликемию (болезней печени, почек, ЖКТ, желёз внутренней секреции и др.).

Патогенетический

Патогенетический принцип терапии ориентирован на:.

Блокирование главных патогенетических звеньев гипогликемической комы или гипогликемического синдрома (расстройств энергообеспечения, повреждения мембран и ферментов, нарушений электрогенеза, дисбаланса ионов, КЩР, жидкости и других).

Ликвидацию расстройств функций органов и тканей, вызванных гипогликемией и её последствиями.

Устранение острой гипогликемии, как правило, приводит к быстрому «выключению» её патогенетических звеньев. Однако хронические гипогликемии требуют целенаправленной индивидуализированной патогенетической терапии.

Симптоматический

Симптоматический принцип лечения направлен на устранение симптомов, усугубляющих состояние пациента (например, сильной головной боли, страха смерти, резких колебаний АД, тахикардии и др.).

Понравилась статья? Поделитесь с друзьями!