Хромосомная теория наследственности моргана ее современная трактовка. О чем говорит хромосомная теория наследственности

Хромосомная теория наследственности сформулирована в 1911-1926 гг. Т. Х. Морганом по результатам своих исследований. С ее помощью выяснено материальную основу законов наследственности, установленных Г. Менделем, и то, почему в определенных случаях наследования тех или иных признаков от них отклоняется.

Основные положения

Основные положения хромосомной теории наследственности такие:

  • гены расположены в хромосомах в линейном порядке;
  • различные хромосомы имеют неодинаковые наборы генов, т.е. каждая из негомологичных хромосом имеет свой уникальный набор генов;
  • каждый ген занимает в хромосоме определенный участок; аллельные гены занимают в гомологичных хромосомах одинаковые участки;
  • все гены одной хромосомы образуют группу сцепления, благодаря чему некоторые признаки наследуются сцеплено; сила сцепления между двумя генами, расположенными в одной хромосоме, обратно пропорциональна расстоянию между ними;
  • сцепления между генами одной группы нарушается вследствие обмена участками гомологичных хромосом в профазе первого мейотического деления (процесс кроссинговера)
  • каждый биологический вид характеризуется определенным набором хромосом (кариотипа) — количеством и особенностями строения отдельных хромосом.

Хромосомная теория наследственности, теория, согласно которой хромосомы, заключенные в ядре клетки, являются носителями генов и является материальной основой наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

История

Хромосомная теория наследственности возникла в начале 20 века на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа.

В 1902 году В. Сэттон в США, обратил внимание на параллелизм в поведении хромосом и Менделю т.н. «Наследственных факторов», и Т. Бовери в Германии выдвинули хромосомную гипотезу наследственности, согласно которой наследственные факторы (название впоследствии генами) Менделя локализованы в хромосомах. Первые подтверждения этой гипотезы были получены при изучении генетического механизма определения пола у животных, когда было выяснено, что в основе этого механизма лежит распределение половых хромосом среди потомков. Дальнейшее обоснование Х. т принадлежит американскому генетику Т. Х. Моргану, который отметил, что передача некоторых генов (например, гена, обусловливающего белоглазие у самок дрозофилы при скрещивании с красноглазыми самцами) связана с передачей половой Х-хромосомы, то есть наследуются признаки, сцепленные с полом (у человека известно несколько десятков таких признаков, в том числе некоторые наследственные дефекты — дальтонизм, гемофилия и др.).

Доказательство теории было получено в 1913 американским генетиком К.. Бриджесом, открывший нерасхождения хромосом в процессе мейоза у самок дрозофилы и отметил, что нарушения в распределении половых хромосом сопровождается изменениями в наследовании признаков, сцепленных с полом.

С развитием теории было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов; признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые рекомбинантные, их сочетание) было подробно исследовано Морганом и его сотрудниками (А. Г. Стертевантом и др.) И послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящихся у родителей в сочетаниях и, в мейозе в гетерозиготной формы ® могут меняться местами, в результате чего рядом с гаметами АВ и ab образуются гаметы Ab и аВ. Подобные перекомбинации происходят благодаря разрывам гомологичных хромосом на участке между генами и дальнейшем соединению разорванных концов в новом сочетании: Реальность этого процесса, названного пересечением хромосом, или кроссинговером, была доказана в 1933 ему, ученым К. Штерномв опытах с дрозофилой и американскими учеными Х. Крейтономи Б. Мак-Клинток — с кукурузой. Чем дальше друг от друга расположены сцепленные гены, тем больше вероятность кроссинговера между ними. Зависимость частоты кроссинговера от расстояний между сцепленными генами была использована для построения генетических карт хромосом. В 30-х гг. 20 в Ф. Добржанский показал, что порядок размещения генов на генетических и цитологических картах хромосом совпадает.

Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации. Однако открытие в 1925 советскими учёными Г. А. Надсоном и Г. С. Филипповым, а в 1927 американским ученым Р.Меллером влияния рентгеновских лучей на возникновение наследственных изменений (мутаций) у дрозофилы, а также применение рентгеновских лучей для ускорения мутационного процесса у дрозофилы позволили советским ученым А. С. Серебровскому, Н. П. Дубинину и др. сформулировать 1928-30 представлений о делимости гена на более мелкие единицы, расположенные в линейной последовательности и способные к мутационных изменений. В 1957 этих представлений были доведены работой американского ученого С. Бензера с бактериофагом Т4. Использование рентгеновских лучей для стимулирования хромосомных перестроек позволило Н. П. Дубинину и Б. Н. Сидорову обнаружить в 1934 эффект положения гена (открыт в 1925 Стертевантом), то есть зависимость проявления гена от места расположения его на хромосоме. Возникло представление о единстве дискретности и непрерывности в строении хромосомы.

Хромосомная теория наследственности развивается в направлении углубления знаний о универсальных носителей наследственной информации — молекулы дезоксирибонуклеиновой кислоты (ДНК). Установлено, что непрерывная последовательность пуриновых и пиримидиновых оснований вдоль цепи ДНК (дезоксирибонуклеиновая кислота) образует гены, межгенных интервалы, знаки начала и конца считывания информации в пределах гена; определяет наследственный характер синтеза специфических белков клетки и, следовательно, наследственный характер обмена веществ. ДНК (дезоксирибонуклеиновая кислота) составляет материальную основу группы сцепления у бактерий и многих вирусов (у некоторых вирусов носителем наследственной информации является рибонуклеиновая кислота) молекулы ДНК (дезоксирибонуклеиновая кислота), входящий в состав митохондрий, пластид и др. органоидов клетки, служат материальными носителями цитоплазматической наследственности.

Х. т. Н., Объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в с.-х. (сельскохозяйственный) науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения Х. т позволяют более рационально вести с.-х. (сельскохозяйственный) производство. Так, явление сцепленного с полом наследования ряда признаков в с.-х. (сельскохозяйственный) животных позволило до изобретения методов искусственного регулирования пола у тутового шелкопряда выбраковывать коконы менее производительной пола, к разработке способа разделения цыплят по полу исследованием клоаки — отбраковывать петушков и т. п. Важнейшее значение для повышения урожайности многих с.-х. (сельскохозяйственный) культур имеет использование полиплоидии. На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека.

Видео по теме

Хромосомная теория наследственности базируется на знаниях ученых о строении генов и их передаче следующим поколениям. Это дает возможность ответить на некоторые вопросы, связанные с нашим происхождением, внешними данными, поведением, болезнями и т. д. Хромосомная теория наследственности заключается в порядке передачи от родителей к детям информации, находящейся в генах, которые в сумме дают нового человека.

Наследственность

Информация передается по наследству посредством тысячи генов, которые находятся в ядрах яйцеклетки и сперматозоида, образующих новый организм. Каждый ген имеет код, который синтезирует один определенный вид белка. Данный процесс упорядочен, что дает возможность предсказать особенности будущего поколения. Это объясняется тем, что гены (единицы наследования) объединены в определенном порядке. Интересным остается тот факт, что каждая клетка содержит пару хромосом, отвечающих за один белок. Таким образом, каждый ген - парный (аллельный). Один из них доминирует, другой находится в «спящем» состоянии. Это присуще всем клеткам организма, кроме половых (те имеют только по одной цепи ДНК, чтобы во время слития в зиготу образовать полноценное ядро с полным набором хромосом). Эти простые истины и называются «хромосомная теория наследственности», или генетика Менделя.

Потомство

Во время образования гамет пары генов расходятся, но во время оплодотворения происходит другое: гены яйцеклетки и сперматозоида объединяются. Новое сочетание дает возможность выявить развитие определенных признаков у потомства. Так как у каждого родителя гены аллельные, они не могут предсказать, какие передадутся ребенку. Конечно, согласно одному из законов Менделя доминантные гены более сильные, и поэтому велика вероятность, что у ребенка они проявятся, однако все зависит от случая.

Болезни

Хромосомы человека составляют 23 пары. Иногда набор может быть неправильным в результате прикрепления лишнего гена. Тогда способны возникнуть различного рода мутации. Также это называется «хромосомный синдром» - изменение структуры цепи ДНК: инверсия хромосомы, ее выпадение, дупликация, перестановка в определенном участке. Еще возможны обмен участками непохожих хромосом, перестановка определенного участка или перенесение гена из одной хромосомы на другую. Яркими примерами подобных проявлений выступают следующие болезни.

1. Синдром «кошачьего крика»

Хромосомная теория наследственности подтверждает, что подобное нарушение вызвано посредством выпадения короткого плеча пятой хромосомы. Данный недуг проявляется в первые минуты жизни в виде плача, похожего на кошачье «мяу». После нескольких недель такой симптом пропадает. Чем старше ребенок, тем сильнее видно аномальное развитие: сначала он отличается малым весом, затем все четче заметна асимметрия лица, проявляется микроцефалия, глаза раскосые, переносица - широкая, аномальные уши с внешним слуховым проходом, возможен порок сердца. Физическое и умственное отставание - неотъемлемая часть болезни.

2. Геномные мутации
  • Анеуплоидия (не кратное гаплоидному набору количество хромосом). Яркий пример - синдром Эдвардса. Проявляется родами на ранних сроках, плод имеет гипоплазию мышц скелета, малый вес, микроцефалию. Определяются наличие «заячьей губы», отсутствие большого пальца на ногах, дефекты внутренних органов, их аномальное развитие. Выживают только единицы и остаются умственно отсталыми на протяжении всей жизни.
  • Полиплоидия (кратное количество хромосом). Синдром Патау проявляется внешними и умственными аномалиями. Дети рождаются глухими, отстают в умственном развитии. Хромосомная теория наследственности подтверждается всегда, что позволяет предсказывать развитие плода еще в утробе матери и при необходимости прерывать беременность.

На рубеже XIX и XX веков были изучены основные этапы деления клетки. Время жизни клетки с момента ее образования до деления составляет клеточный цикл . Клеточный цикл делится на стадии, ярчайшей из которых в морфологическом отношении является митоз или собственно деление клетки. Период между митозами называется интерфазой . Ключевая роль в митозе принадлежит хромосомам – таким структурам в ядрах клеток, которые в период деления отчетливо видны при световой микроскопии и использовании специфических методов окрашивания. Окрашивающееся вещество хромосом называется хроматином . Впервые существование хромосом было показано Флемингом в 1882 году. Термин хромосома впервые введен Валдеером в 1888 году (греч.: chroma — окраска; soma — тело).

Набор хромосом одной клетки называется кариотипом . Число и морфология хромосом относятся к видовым признакам. Различные виды организмов различаются по кариотипу, в то время как в пределах одного вида таких различий не наблюдается, и аномалии кариотипа чаще всего ассоциированы с тяжелыми патологическими состояниями. В каждой хромосоме есть важный функциональный участок, который называется центромерой . Центромера разделяет хромосому на два плеча: короткое (p ) и длинное (q ) . Хромосомы делят на группы в зависимости от их длины и локализации центромеры. В соматических клетках высших каждая хромосома представлена двумя копиями, то есть диплоидным набором . И только в половых клетках наблюдается одинарный или гаплоидный набор хромосом. Это обеспечивается за счет особой формы деления половых клеток – мейоза .

Первые обширные исследования, касающиеся структуры и морфологии хромосом, в нашей стране были проведены на растительных объектах в 20-е годы прошлого века выдающимся цитологом и эмбриологом С. Г. Навашиным и его талантливыми учениками – М. С. Навашиным, Г. А. Левитским, Л. Н. Делоне. В 1924 году Г. А. Левитский опубликовал первое в мире руководство по цитогенетике: «Материальные основы наследственности», в котором, в частности, он ввел понятие кариотипа в том значении, в котором этот термин употребляется и в настоящее время.

Рассмотрим более подробно основные стадии клеточного цикла – рис. 5, этапы митоза – рис. 6 и мейоза – рис. 7.

Рисунок 5. Клеточный цикл

Клетка, закончившая деление находится в стадии G 0 . Самой длительной стадией интерфазы является период относительного покоя клетки – G 1 , ее продолжительность может значительно варьировать. Примерно в середине стадии G 1 имеется контрольная точка, при достижении которой клетка неизбежно вступает в деление. После G 1 начинается очень важная синтетическая стадия S, в процессе которой происходит удвоение каждой хромосомы с образованием двух хроматид , соединенных между собой одной центромерой. Далее следует подготовка к митозу – стадия G 2 и сам митоз – стадия М.

Рисунок 6. Митоз

Митоз, в свою очередь, также делится на стадии. На стадии профазы происходит исчезновение ядерной мембраны, конденсация или уплотнение хромосом за счет их спирализации, миграция центриолей к противоположным полюсам, приводящая к поляризации клетки, и формирование веретена деления , состоящего из микротрубочек. Нити микротрубочек тянутся от одного полюса до другого и к ним прикрепляются центромеры хромосом. В период метафазы центромеры располагаются по экватору клетки перпендикулярно оси веретена деления. Именно в этот период хромосомы особенно отчетливо видны, так как они находятся в наиболее компактном состоянии. На стадии анафазы происходит разделение центромер, хроматиды превращаются в самостоятельные хромосомы и, увлекаемые центромерами, начинают двигаться к противоположным полюсам клетки по нитям веретена деления. На заключительной стадии – телофазе – происходит деспирализация хромосом, исчезает веретено деления, формируется ядерная мембрана и происходит разделение цитоплазмы. На стадии интерфазы при обычной световой микроскопии хромосомы как отдельные структуры не видны, окрашены только зерна хроматина, случайным образом распределенные по ядру.

Рисунок 7. Мейоз

Мейоз происходит только при образовании половых клеток, и он включает два клеточных деления: мейоз I или редукционное деление и мейоз II. Во время профазы мейоза I гомологичные хромосомы коньгируют (сливаются) друг с другом по всей длине, образуя бивалент . В это время может происходить обмен участками между несестринскими хроматидами – кроссинговер или гомологичная рекомбинация (рис. 8.)

Рисунок 8. Кроссинговер

В точке рекомбинации образуется видимая в световой микроскоп крестообразная структура – хиазма . Обмен происходит только между двумя из четырех хроматид. Хиазмы формируются случайно, и их число, в среднем, зависит от длины хромосомы: чем длиннее хромосома, тем больше хиазм. На стадии метафазы биваленты выстраиваются в экваториальной плоскости, при этом ценромеры случайно ориентируются относительно полюсов клетки. На стадии анафазы гомологичные хромосомы отделяются друг от друга и начинают двигаться к противоположным полюсам. При этом расщепления центромеры не происходит, и сестринские хроматиды оказываются связанными. Однако они могут быть уже не идентичны друг другу из-за произошедшего кроссинговера. Таким образом, в процессе мейоза I из одной диплоидной клетки образуются две гаплоидные. Промежуток между первым и вторым делениями мейоза называется интеркинезом . Он может быть достаточно продолжительным, при этом хромосомы декомпактизируются и выглядят также как в интерфазе. Важно подчеркнуть, что на этой стадии не происходит удвоения хроматид.

В профазе мейоза II восстанавливается веретено деления, хромосомы располагаются в экваториальной плоскости. В анафазе II происходит расщепление центромер, и хромосомы двигаются к противоположным полюсам. Таким образом, на один акт удвоения хромосом приходятся два последовательных цикла деления клетки. После завершения телофазы II диплоидная родительская клетка делится на четыре гаплоидные половые клетки, причем образовавшиеся гаметы не идентичны друг другу – фрагменты материнских и отцовских хромосом находятся в них в различных комбинациях.

Исследуя процессы митоза и мейоза У. Сэттон и Е. Бовери в 1902 г. пришли к заключению, что постулированные Менделем наследственные факторы или гены находятся в хромосомах, так как поведение хромосом соответствует поведению этих наследственных факторов. Действительно, Мендель предположил, что в соматических клетках содержатся две копии наследственного фактора, отвечающего за один и тот же признак или, как мы уже определили, два аллеля одного гена. Эти аллели могут быть идентичными – АА или аа , либо разными – Аа . Но в половые клетки попадает только один из аллелей – А или а. Вспомним, что гомологичные хромосомы в соматических клетках также содержатся в двух копиях, и только одна из них попадает в гаметы. При оплодотворении двойной набор хромосом и аллелей гена восстанавливается.

Прямые доказательства локализации генов в хромосомах были получены позднее Т. Морганом (1910) и К. Бриджесом (1916) в опытах на дрозофиле. Возвращаясь к законам Менделя, заметим, что независимое комбинирование справедливо только для тех признаков, гены которых находятся в разных хромосомах. Родительские аллели генов, локализованных в одной хромосоме, имеют большую вероятность совместного попадания в одну и ту же половую клетку. Таким образом, появилось представление о гене, как об участке хромосомы или хромосомном локусе , который отвечает за один признак и одновременно является единицей рекомбинации и мутации, ведущей к изменению фенотипа.

Хромосомы высших организмов состоят из эухроматина и гетерохроматина , сохраняющего свое компактное положение на протяжении всего клеточного цикла. Именно гетерохроматин виден в интерфазных ядрах в виде окрашенных гранул. Большое количество гетерохроматина локализовано в области центромеры и на концах хромосом, которые называются теломерами . Хотя функции гетерохроматина до конца не ясны, предполагается, что он играет важную роль в поддержании структурной целостности хромосом, в их правильном расхождении в процессе деления клетки, а также в регуляции работы генов. Эухроматин на препаратах имеет более светлую окраску, и, по-видимому, в этих районах локализована большая часть генов. Хромосомные перестройки чаще возникают в области гетерохроматина. Большая роль в изучении структуры и функций гетерохроматиновых и эухроматиновых районов хромосом принадлежит нашей выдающейся соотечественнице Александре Алексеевне Прокофьевой-Бельговской. Впервые детальное морфологическое описание десяти наиболее крупных хромосом человека и различных групп более мелких хромосом представлено в работах ведущих отечественных цитологов М. С. Навашина и А. Г. Андреса в середине 30-х годов прошлого века.

В 1956 году Тио и Леви, используя обработку гистологических препаратов колхицином, определили, что у человека 46 хромосом, состоящих из 23 различных пар. Колхицин задерживает деление клеток на стадии метафазы, когда хромосомы в наибольшей степени конденсированы и потому удобны для распознавания. На рис. 9 представлена схема дифференциального окрашивания хромосом человека.

Рисунок 9. Схема дифференциального окрашивания хромосом человека

У женщин обе хромосомы каждой пары полностью гомологичны друг другу по форме и рисунку окрашивания. У мужчин такая гомология сохраняется только для 22 пар хромосом, которые называются аутосомами . Оставшаяся пара у мужчин состоит из двух различных половых хромосом — X и Y . У женщин половые хромосомы представлены двумя гомологичными X-хромосомами. Таким образом, нормальный кариотип женщины записывается как (46, XX), а мужчины — (46, XY). В половые клетки, как мужчин, так и женщин попадает только один набор хромосом. Все яйцеклетки несут 22 аутосомы и X-хромосому, а вот сперматозоиды различаются – половина из них имеет такой же набор хромосом, как и яйцеклетки, а в другой половине вместо Х-хромосомы присутствует Y-хромосома. При оплодотворении двойной набор хромосом восстанавливается. При этом, кто родится – девочка или мальчик – зависит от того, какой сперматозоид принял участие в оплодотворении, тот, который несет Х- хромосому или тот, который несет Y-хромосому. Как правило, это случайный процесс, поэтому девочки и мальчики рождаются примерно с равной вероятностью.

На начальных этапах анализа кариотипа человека индивидуальная идентификация могла быть осуществлена только в отношении трех первых наиболее крупных хромосом. Остальные хромосомы делили на группы в зависимости от их размера, расположения центромеры и наличия спутников или сателлитов – небольших компактных фрагментов, отделенных от хромосомы тонкими перетяжками. На рис. 10 изображены типы хромосом: акроцентрики, метацентрики и субметацентрики при локализации центромеры соответственно на конце хромосомы, посредине и в промежуточном положении.

Рисунок 10. Типы хромосом

В соответствии с принятой классификацией у человека выделяют 7 групп хромосом: A, B, C, D, E, F и G или 1, 2, 3, 4, 5, 6 и 7. Для лучшей идентификации хромосом делают их раскладку по группам или кариограмму . На рис. 11 изображен женский кариотип и его кариограмма.

Рисунок 11. Женский кариотип и его кариограмма

В начале 70-х годов XX века были разработаны методы дифференциального окрашивания хромосом с использованием красителя Гимза (G-, R-, C-, Q-методы). При этом на хромосомах выявляется характерная поперечная исчерченность, так называемые диски или бэнды , расположение которых специфично для каждой пары хромосом. Методы дифференциального окрашивания хромосом позволяют идентифицировать не только каждую хромосому, но и отдельные районы хромосом, последовательно пронумерованные от центромеры к теломере, а также сегменты внутри районов. Например, запись Xp21.2 означает короткое плечо X-хромосомы, район 21, сегмент 2. Эта запись очень удобна для определения принадлежности генов или других элементов генома к определенным хромосомным локусам. В частности, в области Xp21.2 локализован ген миодистрофии Дюшенна – DMD . Таким образом, были созданы методические основы для изучения особенностей кариотипа у разных видов организмов, определения его индивидуальной изменчивости и аномалий при определенных патологических состояниях. Тот раздел генетики, который занимается изучением хромосом и их аномалий, называется цитогенетикой . Первые цитогенетические карты хромосом человека составлены К. Б. Бриджесом и Стертевантом.

В первой половине XX века хромосомная теория наследственности получила значительное развитие. Было показано, что гены расположены в хромосомах линейно. Гены одной хромосомы образуют группу сцепления и наследуются вместе. Новые сочетания аллелей генов одной хромосомы могут образовываться за счет кроссинговера, причем вероятность этого события возрастает с увеличением расстояния между генами. Были введены единицы измерения генетического расстояния – сантиморганы или морганиды , названные так в честь основоположника хромосомной теории наследственности – Томаса Моргана. Считается, что два гена одной хромосомы находятся на расстоянии 1сантиморган (сМ), если вероятность кроссинговера между ними в процессе мейоза составляет 1%. Конечно, сантиморганы не являются абсолютными единицами измерения расстояния в хромосомах. Они непосредственно зависят от кроссинговера, который с разной частотой может происходить в разных участках хромосом. В частности, в области гетерохроматина кроссинговер проходит менее интенсивно.

Заметим, что описанный выше характер деления соматических и половых клеток – митоз и мейоз, справедлив для эукариот , то есть таких организмов, в клетках которых имеются ядра. У бактерий, которые относятся к классу прокариот , ядер нет, но одна хромосома в клетке присутствует и, как правило, она имеет кольцевую форму. Наряду с хромосомой, в клетках прокариот в большом количестве копий могут содержаться гораздо более мелкие кольцевые структуры, которые называются плазмидами .

В 1961 году М. Лайон выдвинул гипотезу о том, что у особей женского пола одна из Х-хромосом инактивируется. Причем в разных клетках инактивации могут подвергаться Х-хромосомы как отцовского, так и материнского происхождения. При анализе женского кариотипа инактивированная Х-хромосома выглядит в виде компактной хорошо окрашенной структуры хроматина округлой формы, расположенной вблизи от ядерной мембраны. Это тельце Барра или половой гетерохроматин . Его идентификация является самым простым способом цитогенетической диагностики пола. Напомним, что в У-хромосоме практически нет гомологов генов Х-хромосомы, однако инактивация одной из Х-хромосом приводит к тому, что доза большинства генов, локализованных в половых хромосомах, у мужчин и женщин оказывается одинаковой, то есть инактивация Х-хромосомы у женщин является одним из механизмов компенсации дозы генов. Процесс инактивации Х-хромосомы называется лайонизацией , и он носит случайный характер. Поэтому в организме женщин соотношение клеток с инактивированной Х-хромосомой отцовского, либо материнского происхождения будет примерно одинаковым. Таким образом, женщины, гетерозиготные по мутации в гене, локализованном в Х-хромосоме, имеют мозаичный фенотип – одна часть клеток содержит нормальный аллель, а другая – мутантный.

Лекц и я № 3

Хромосомная теория наследственности.

Основные положення хромосомной теории наследственности. Хромосомный анализ.

Формирование хромосомной теории. В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911-1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основные положения хромосомной теории наследственности.

1. Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

2. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

3. Гены расположены в хромосоме в линейной последовательности.

4. Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

5. Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

6. Каждый биологический вид характеризуется определенным набором хромосом - кариотипом .

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием . Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов- Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер .

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость , которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе .

Сцепление и кроссинговер. Из принципов генетического анализа, изложенных в преды­дущих главах, с очевидностью вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в негомологичных хромосомах. Следовательно, у каждого организма число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, оче­видно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно.

Остается предположить, что в каждой хромосоме находится не один ген, а много. Если это так, то третий закон Менделя касается распределения хромосом, а не генов, т. е. его действие ограничено.

Явление сцепленного наследования . Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и а b ), получается гибрид А a В b , образующий четыре сорта гамет АВ, А b , аВ и а b в равных количествах.

В соответствии с этим в анализирующем скрещивании осуществляется расщепление 1: 1: 1: 1, т.е. сочетания признаков, свойственные родительским формам (АВ и а b ), встречаются с такой же частотой, как и новые комбинации b и аВ),- по 25%. Однако по мере накопления фактов генетики все чаще стали сталкиваться с отклонениями от независимого наследования. В отдельных случаях новые комбинации признаков b и аВ) в F b совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление нарушалось, давая новые комбинации.

Совместное наследование генов, ограничивающее их свобод­ное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием.

Кроссинговер и его генетическое доказательство. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцепленно - группой.

Исследования Т.Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами.

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными, а с непретерпевшими - некроссоверными. Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами, а возникшие за счет некроссоворных гамет гибрида - некроссоверными или нерекомбинантными.

Закон сцепления Моргана. При анализе расщепления в случае кроссинговера обращает на себя внимание определенное коли­чественное отношение кроссоверных и некроссоверных классов. Обе исходные родительские комбинации признаков, образовавшиеся из некроссоверных гамет, оказываются в потомстве анали­зирующего скрещивания в равном количественном отношении. В указанном опыте с дрозофилой тех и других особей было примерно по 41,5%. В сумме некроссоверные мухи составили 83% от общего числа потомков. Два кроссоверных класса по числу особей также одинаковы, и сумма их равна 17%.

Частота кроссинговера не зависит от аллельного состояния генов, участвующих в скрещивании. Если в качестве родителя использовать мух и , то в анализирующем скрещивании кроссоверные (b + vg и bvg + ) и некроссоверные (bvg и b + vg + ) особи появятся с той же частотой (соответственно 17 и 83%), что и в первом случае.

Результаты этих опытов показывают, что сцепление генов реально существует, и лишь в известном проценте случаев оно нарушается вследствие кроссинговера. Отсюда и был сделан вывод, что между гомологичными хромосомами может осуществляться взаимный обмен идентичными участками, в результате чего гены, находящиеся в этих участках парных хромосом, перемещаются из одной гомологичной хромосомы в другую. Отсутствие перекреста (полное сцепление) между генами представляет исключение и известно лишь у гетерогаметного пола немногих видов, например у дрозофилы и шелкопряда.

Изученное Морганом сцепленное наследование признаков получило название закона сцепления Моргана. Поскольку рекомбинация осуществляется между генами, а сам ген кроссинговером не разделяется, его стали считать единицей кроссинговера.

Величина кроссинговера . Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания. Рекомбинация происходит реципрокно, т.е. между родительскими хромосомами осуществляется взаимный обмен; это обязывает подсчитывать кроссоверные классы вместе как результат одного события. Величина кроссинговера выражается в процентах. Один процент кроссинговера составляет единицу расстояния между генами.

Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y , белый цвет глаз w и вильчатые крылья bi , были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w ; 3,5% − от кроссинговера между генами w и bi и 4,7% - между у и bi .

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w , w и bi , следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.

Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое опрделенное место - локус.

Основным положениям хромосомной теории наследственности - парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме - соответствует однонитчатая модель хромосомы.

Одинарный и множественный перекресты. Приняв положения, что генов в хромосоме может быть много и расположены они в хромосоме в линейном порядке, а каждый ген занимает определённый локус в хромосоме, Морган допустил, что перекрест между гомологичными хромосомами может происходить одновременно в нескольких точках. Это предположение было им доказано тоже на дрозофиле, а затем полностью подтвердилось на ряде других животных, а также на растениях и микроорганизмах.

Кроссинговер, происходящий лишь в одном месте, называют одинарным, в двух точках одновременно – двойным, в трёх – тройным и т.д., т.е. он может быть множественным.

Чем дальше отстоят друг от друга в хромосоме гены, тем больше вероятность двойных перекрестов между ними. Процент рекомбинаций между двумя генами тем точнее отражает расстояние между ними, чем оно меньше, так как в случае малого расстояния уменьшается возможность двойных обменов.

Для учета двойного кроссинговера необходимо иметь дополнительный маркер, находящийся между двумя изучаемыми генами. Определение расстояния между генами осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов прибавляют удвоенный процент двойных кроссинговеров. Удвоение процента двойных кроссинговеров необходимо в связи с тем, что каждый двойной кроссинговер возни­кает благодаря двум независимым одинарным разрывам в двух точках.

Интерференция. Установлено, что кроссинговер, происшедший в одном месте хромосомы, подавляет кроссинговер в близлежащих районах. Это явление носит название интерференции. При двойном перекресте интерференция проявляется особенно сильно в случае малых расстояний между генами. Разрывы хромосом оказываются зависимыми друг от друга. Степень этой зависимо­сти определяется расстоянием между происходящими разрывами: по мере удаления от места разрыва возможность другого разрыва увеличивается.

Эффект интерференции измеряется отношением числа наблюдаемых двойных разрывов к числу возможных при допущении полной независимости каждого из разрывов.

Локализация гена. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме.

Прежде чем определить, положение гена, т. е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления. Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом.

К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays ) гаплоидный набор хромосом и число групп сцепления со­ставляют 10, у гороха (Pisum sativum ) – 7, дрозофилы (Drosophila melanogaster) – 4, домовой мыши (Mus musculus ) – 20 и т. п.

Поскольку ген занимает определенное место в группе сцепления, это позволяет устанавливать порядок расположения генов в каждой хромосоме и строить генетические карты хромосом.

Генетические карты. Генетической картой хромосом называют схему относительного расположения генов, находящихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.

Генетические карты составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют.

Для того, чтобы составить карты, необходимо изучить закономерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы - более 400 генов, локализованных в десяти группах сцепления и т.д. При составлении генетических карт указывается группа сцепления, полное или сокращенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозначается место центромеры.

У многоклеточных организмов рекомбинация генов бывает реципрокной. У микроорганизмов она может быть односторонней. Так, у ряда бактерий, например у кишечной палочки (Escherichia coli ), перенос генетической информации происходит во время конъюгации клеток. Единственная хромосома бактерии, имеющая форму замкнутого кольца, рвется во время конъюгации всегда в определенной точке и переходит из одной клетки в другую.

Длина переданного участка хромосомы зависит от длительности конъюгации. Последовательность генов в хромосоме оказывается постоянной. В силу этого расстояние между генами на такой кольцевой карте измеряется не в процентах кроссинговера, а в минутах, что отражает продолжительность конъюгации.

Цитологическое доказательство кроссинговера. После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютна одинаковы но величине и форме.

Чтобы сопоставить цитологические карты гигантских хромо­сом с генетическими, Бриджес предложил воспользоваться коэффициентом кроссинговера. Для этого он разделил общую длину всех хромосом слюнных желез (1180 мкм) на общую длину генетических карт (279 единиц). В среднем это отношение оказалось равным 4,2. Следовательно, каждой единице перекреста на генетической карте соответствует 4,2 мкм на цитологической карте (для хромосом слюнных желез). Зная расстояние между генами на генетической карте какой-либо хромосомы, можно сравнить относительную частоту перекреста в разных ее районах. Например, в Х- хромосоме дрозофилы гены у и ec находятся на расстоянии 5,5%, следовательно, расстояние между ними в гигантской хромосоме должно быть 4,2 мкм Х 5,5 = 23 мкм, но непосредственное измерение дает 30 мкм. Значит, в этом рай­оне Х -хромосомы кроссинговер идет реже средней нормы.

В силу неравномерного осуществления обменов по длине хромосом гены при нанесении их на карту распределяются на ней с разной плотностью. Следовательно, распределение генов на генетических картах можно рассматривать как показатель возможности осуществления перекреста по длине хромосомы.

Механизм кроссинговера. Еще до открытия перекреста хромосом генетическими методами цитологи, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими χ-образных фигур – хиазм (χ-греческая буква «хи»). В 1909 г. Ф.Янсенс высказал предположение, что хиазмы свя­заны с обменом участками хромосом. Впоследствии эти картины послужили дополнительным аргументом в пользу гипотезы генетического перекреста хромосом, выдвинутой Т.Морганом в 1911 г.

Механизм перекреста хромосом связан с поведением гомоло­гичных хромосом в профазе I мейоза.

Кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм.

Если в одном биваленте произошел не один обмен, а два и более, то и этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды.

Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости.

Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе I мейоза при образовании гамет. Однако существует соматический, или митотический, кроссинговер, который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей.

Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда удается наблюдать синапсис гомологичных хромосом и фигуры, похо­жие на хиазмы, но при этом редукции числа хромосом не наблюдается.

Гипотезы о механизме кроссинговера. По поводу механизма перекреста существует несколько гипотез, но ни одна из них не объясняет полностью фактов рекомбинации генов и наблюдаемых при этом цитологических картин.

Согласно гипотезе, предложенной Ф.Янсенсом и развитой К.Дарлингтоном, в процессе синапсиса гомологичных хромосом в биваленте создается динамическое напряжение, возникающее в связи со спирализацией хромосомных нитей, а также при взаимном обвивании гомологов в биваленте. В силу этого напряжения одна из четырех хроматид рвется. Разрыв, нарушая равновесие в биваленте, приводит к компенсирующему разрыву в строго идентичной точке какой-либо другой хроматиды этого же бивалента. Затем происходит реципрокное воссоединение разорванных концов, приводящее к кроссинговеру. Согласно этой гипотезе хиазмы непосредственно связаны с кроссинговером.

По гипотезе К.Сакса хиазмы не являются результатом кроссинговера: сначала образуются хиазмы, а затем происходит обмен. При расхождении хромосом к полюсам вследствие механического напряжения в местах хиазм происходят разрывы и обмен соответствующими участками. После обмена хиазма исчезает.

Смысл другой гипотезы, предложенной Д.Беллингом и модернизированной И.Ледербергом, заключается в том, что процесс репликации ДНК может реципрокно переключаться с одной нити на другую; воспроизведение, начавшись на одной матрице, с какой-то точки переключается на матричную нить ДНК.

Факторы, влияющие на перекрест хромосом. На кроссинговер влияет множество факторов как генетической природы, так и внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х - и Y -хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y -специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) - гомология нуклеотидных последовательностей.

Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контро­ля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.

Обнаружены гены, выполняющие роль запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене.

Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.

В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские, хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.

Законы наследования Моргана и вытекающие из них принципы наследственности. Огромную роль в создании и развитии генетики сыграли работы Т.Моргана. Он автор хромосомной теории наследственности. Им были открыты законы наследования: наследование признаков, сцепленных с полом, сцепленное наследование.

Из этих законов вытекает следующие принципы наследственности:

1. Фактор-ген есть определённый локус хромосомы.

2. Аллели гена расположены в идентичных локусах гомологичных хромосом.

3. Гены расположены в хромосоме линейно.

4. Кроссинговер – регулярный процесс обмена генами между гомологичными хромосомами.

Мобильные элементы генома. В 1948 г. американская исследовательница Мак-Клинток открыла у кукурузы гены перемещающиеся из одного участка хромосомы в другой и назвала феномен транспозицией, а сами гены контролириующими элементами (КЭ). 1.Эти элементы могут перемещаться из одного сайта в другой; 2. их встраивание в данный район влияет на активность генов расположенных рядом; 3. утрата КЭ в данном локусе превращает прежде мутабильный локус в стабильный; 4. в сайтах, в которых присутствуют КЭ, могут возникать делеции, транслокации, транспозиции, инверсии, а также разрывы хромосом. В 1983 г. за открытие мобильных генетических элементов Нобелевская премия была присуждена Барбаре Мак-Клинток.

Наличие мобильных элементов в геномах имеет разнообразные последствия:

1. Перемещения и внедрение мобильных элементов в гены может вызывать мутации;

2. Изменение состояния активности генов;

3. Формирование хромосомных перестроек;

4. Формирование теломер.

5. Участие в горизонтальном переносе генов;

6. Транспозоны на основе Р-элемента используют для трансформации у эукариот, клонирования генов, поиска энхансеров и т.д.

У прокариот существуют три типа мобильных элементов – IS-элементы (инсерции), транспозоны, и некоторые бактериофаги. IS-элементы встраиваются в любой участок ДНК, часто вызывают мутации, разрушая кодирующие или регуляторные последовательности, влияют на экспрессию соседних генов. Бактериофаг может вызывать мутации в результате встраивания.

Глава 13. Генетика. Зарождение хромосомной теории наследственности. (В. Н. Сойфер)

Генетика - наука о наследственности и ее изменчивости - получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. В короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Ее бурное развитие было обусловлено как запросами сельского хозяйства, нуждавшегося в детальной разработке проблем наследственности у растений и животных, так и успехами биологических дисциплин, таких, как морфология, эмбриология, цитология, физиология и биохимия, подготовивших почву для углубленного изучения законов наследственности и материальных носителей наследственных факторов. Название генетика было предложено для новой науки английским ученым У. Бэтсоном в 1906 г.

Опыты по гибридизации растений. Накопление сведений о наследуемых признаках

Попытки понять природу передачи признаков по наследству от родителей детям предпринимались еще в древности. Размышления на эту тему встречаются в сочинениях Гиппократа, Аристотеля и других мыслителей. В XVII - XVIII вв., когда биологи начали разбираться в процессе оплодотворения и искать, с каким началом - мужским или женским - связана тайна оплодотворения, споры о природе наследственности возобновились с новой силой. Знаменитая борьба преформистов ("анималькулистов" и "овистов") немало способствовала выяснению природы этого процесса у животных. У растений половая дифференциация была открыта Р. Я. Каммерариусом (1694), обнаружившим в опытах со шпинатом, коноплей и кукурузой, что для завязывания плодов необходимо опыление.

Тем самым к концу XVII в. была подготовлена научная почва для начала опытов по гибридизации растений. Первые успехи в этом направлении были достигнуты в начале XVIII в. Полагают, что первый межвидовой гибрид получил англичанин Т. Фэйрчайлд при скрещивании гвоздик Dianthus barbatus и D. caryophyllus. С получением других гибридов практика гибридизации стала расширяться, но ботаники еще продолжали считать спорным вопрос о наличии двух полов у растений и их участии в оплодотворении. В 1759 г. Петербургская Академия наук для выяснения этого вопроса объявила даже специальный конкурс. Премии за работу "Исследование пола у растений" ("Disquisitio de sexu plantarum") был удостоен в 1760 г. К. Линней, получивший межвидовой гибрид козлобородников (Tragopogon), легко дающих помеси в естественных условиях. Однако сути гибридизации и роли пыльцы в скрещивании Линней не понял. Научно обоснованное решение этого вопроса было достигнуто в опытах члена Российской Академии наук И. Г. Кельрейтера.

В 1760 г. Кельрейтер начал первые тщательно продуманные опыты по изучению передачи признаков при скрещивании растений. В 1761 - 1766 гг., почти за четверть века до Л. Спалланцани, изучавшего проблему скрещивания на животных объектах, Кельрейтер в опытах с табаком, дурманом и гвоздиками показал, что после переноса пыльцы одного растения на пестик другого отличающегося по своим морфологическим признакам растения образуются завязи и семена, дающие растения со свойствами, промежуточными по отношению к обоим родителям. В результате Кельрейтер пришел к выводу фундаментальной важности: в формировании потомства и передаче признаков, прослеживаемых у потомков, принимают участие оба родительских организма. Кельрейтер ввел также метод обратных скрещиваний с одним из исходных родителей, благодаря чему ему удалось доказать наследование признаков и равноправие мужских и женских элементов в формировании дочерних особей. Точный метод скрещивания, разработанный Кельрейтером, обусловил быстрый прогресс в изучении наследственной передачи признаков.

В конце XVIII - начале XIX в. английский селекционер-растениевод Т. Э. Найт, проводя скрещивания различных сортов, столкнулся с проблемой сочетания признаков родителей у потомков. Подбирая разные пары для скрещиваний, он обнаружил, что каждый сорт характеризуется комплексом присущих ему мелких признаков. Число признаков, которыми два сорта отличаются друг от друга, тем больше, чем меньше степень их родства. Важным выводом Найта явилось обнаружение неделимости мелких признаков при различных скрещиваниях. Дискретность наследственного материала, провозглашенная еще в древности, получила в его исследованиях первое научное обоснование. Найту принадлежит заслуга открытия "элементарных наследственных признаков".

Дальнейшие существенные успехи в развитии метода скрещиваний связаны с французской школой селекционеров, особенно с ее наиболее яркими представителями - О. Сажрэ и Ш. Нодэном. Интересы обоих ученых формировались под непосредственным влиянием Кельрейтера и Найта. Они сделали шаг вперед в отношении подбора объектов исследований, целиком перейдя к опытам с относительно быстро развивающимися растениями (овощными культурами), вегетационный цикл которых ограничивается несколькими месяцами. Излюбленными объектами Сажрэ и Нодэна стали представители семейства тыквенных.

Крупнейшим достижением Сажрэ явилось обнаружение феномена доминантности. При скрещивании сортов, различающихся наследственными задатками, он нередко наблюдал подавление признака одного родителя признаком другого. Это явление в максимальной степени проявлялось в первом поколении после скрещивания, а затем подавленные признаки снова выявлялись у части потомков следующих поколений. Тем самым Сажрэ подтвердил, что элементарные наследственные признаки при скрещиваниях не исчезают. К этому же выводу вполне самостоятельно пришел и Нодэн в 1852 - 1869 гг. Но Нодэн пошел еще дальше, приступив к количественному изучению перекомбинации наследственных задатков при скрещиваниях. Видимо, он сознавал, что именно количественное описание результатов скрещиваний может дать в руки исследователей ту нить, которая позволит разобраться в сути процессов, развертывающихся при гибридизации. Однако на этом пути Нодэна ждало разочарование. Неверный методический прием - одновременное изучение большого количества признаков - привел к такой путанице в результатах, что он вынужден был отказаться от своей попытки. Немалую долю неопределенности в трактовку полученных результатов внесли и объекты, использовавшиеся Нодэном: он еще не смог уяснить роль самоопылителей в проведении таких опытов. Недостатки, присущие опытам Нодэна и его предшественников, были устранены в работе Г. Менделя.

Развитие практики гибридизации повело к дальнейшему накоплению сведений о природе скрещиваний. Важные наблюдения о сочетаниях признаков при скрещиваниях стали накапливаться в результате деятельности садоводов и ботаников. Практика требовала решения вопроса о сохранении неизменными свойств "хороших" растений, а также выяснения способов сочетания в одном растении нужных признаков, присущих нескольким родителям. Сходные задачи ставились и животноводами, но неизменно повисали в воздухе, поскольку упирались в незнание законов передачи наследственных признаков. Экспериментально решить эту проблему не представлялось еще возможным. В таких условиях возникли различные умозрительные гипотезы о природе наследственности.

Умозрительные гипотезы о природе наследственности

Наиболее фундаментальной гипотезой такого рода, послужившей в известной мере образцом для аналогичных построений других биологов, явилась "временная гипотеза пангенезиса" Ч. Дарвина, изложенная в последней главе его труда "Изменение домашних животных и культурных растений" (1868). Здесь Дарвин обобщил всю литературу о скрещиваниях и о явлениях наследственности * .

* (Несколько ранее анализ явлений наследственности у человека был сделан П. Люком в его обширной монографии "Traite philosophique et physiologique de l"heredite naturelle" (1847-1850). )

Согласно его представлениям, в каждой клетке любого организма образуются в большом числе особые частицы - геммулы, которые обладают способностью распространяться по организму и собираться (концентрироваться) в клетках, служащих для полового или вегетативного размножения (яйцеклетки, сперматозоиды, почки растений). При оплодотворении геммулы двух половых клеток сливаются, образуя зиготу. Часть геммул дает затем начало новым клеткам (подобным тем, из которых они сформировались), а часть сохраняется в недеятельном состоянии и может быть передана следующим поколениям. Дарвин допускал, что геммулы отдельных клеток могут изменяться в ходе онтогенеза каждого индивидуума и давать начало измененным потомкам. Тем самым он присоединился к сторонникам наследования приобретенных признаков. Кроме того, он считал, что поскольку комплекс наследственных признаков слагается из дискретных факторов наследственности (геммул), то, следовательно, организм не порождает себе подобного в целом, но каждая отдельная единица порождает себе подобную" * .

* (Ч. Дарвин. Соч., т. 4. M., Изд-во АН СССР, 1951, стр. 758. )

Предположение Дарвина о наследовании приобретенных признаков было экспериментально опровергнуто Ф. Гальтоном (1871). Предприняв переливание крови от черных кроликов белым. Гальтон не обнаружил никакого изменения признаков у потомков. На этом основании он спорил с Дарвином, утверждая, что геммулы сосредоточены только в половых клетках растений и животных и почках вегетативно размножающихся растений и что перетекания геммул от вегетативных частей к генеративным не происходит. Гальтон прибегал при этом к аналогии, сравнивая генеративные органы с корневищем некоторых растений, каждый год дающим новые зеленые побеги, откуда его гипотеза получила название "гипотезы корневища".

Умозрительная гипотеза о природе наследственности была предложена ботаником К. Нэгели в работе "Механико-физиологическая теория эволюции" (1884). Нэгели, задумавшись над противоречием между равным вкладом отца и матери в формирование потомства и существенно различным размером сперматозоидов и яйцеклеток, высказал предположение, что наследственные задатки передаются лишь частью вещества клетки, названного им идиоплазмой. Остальная часть (стереоплазма), согласно его представлению, наследственных признаков не несет. Нэгели высказал также предположение, что идиоплазма состоит из молекул, соединенных друг с другом в крупные нитевидные структуры - мицеллы, группирующиеся в пучки и образующие сеть, пронизывающую все клетки организма. Автор не знал фактов, подтверждающих его модель. В эти годы еще не было привлечено внимание к хромосомам как носителям наследственной информации, и гипотеза Нэгели оказалась в известном смысле пророческой. Она подготовляла биологов к мысли о структурированности материальных носителей наследственности. Известностью пользовалась также гипотеза внутриклеточного пангенезиса Г. де Фриза.

Впервые идея о дифференцирующих (неравнонаследственных) делениях ядер клеток развивающегося зародыша была высказана В. Ру в 1883 г. Выводы Ру оказали большое влияние на А. Вейсмана. Они послужили ему отправной точкой для создания теории зародышевой плазмы, получившей окончательное оформление в 1892 г. Вейсман четко указал на носителя наследственных факторов - хромосомы. Он полагал, что в ядрах клеток существуют особые частицы зародышевой плазмы - биофоры, каждая из которых определяет отдельное свойство клеток. Биофоры, согласно Вейсману, группируются в детерминанты - частицы, определяющие специализацию клетки. Поскольку в организме много различных типов клеток, то детерминанты одного типа группируются в структуры более высокого порядка (иды), а последние формируют хромосомы (или иданты, по терминологии Вейсмана).

Сначала Ру (1883), а затем Вейсман высказали предположение о линейном расположении в хромосомах наследственных факторов (хроматиновых зерен, по Ру, и ид, по Вейсману) и их продольном расщеплении во время митоза, чем во многом предвосхитили будущую хромосомную теорию наследственности.

Развивая идею о неравнонаследственном делении, Вейсман логично пришел к выводу о существовании в организме двух четко разграниченных клеточных линий - зародышевых (клеток зачаткового пути) и соматических. Первые, обеспечивая непрерывность передачи наследственной информации, "потенциально бессмертны" и способны дать начало новому организму. Вторые этим свойством не обладают. Выделение двух категорий клеток имело большое положительное значение для последующего развития генетики. Оно, в частности, было началом теоретического опровержения идеи о наследовании приобретенных признаков. Вместе с тем теория наследственности Вейсмана содержала и ошибочное допущение, будто полный набор детерминант содержится только в половых клетках.

Работы указанных биологов сыграли выдающуюся роль в подготовке научной мысли к формированию генетики как науки. К концу XIX в. благодаря работам цитологов, открывших хромосомы, изучивших митотическое (И. Д. Чистяков, 1872; А. Шнейдер, 1873; Э. Страсбургер, 1875; Шлейхер, 1878; В. Флемминг, 1892; и др.) и мейотическое (Э. ван Бенеден, 1883; Т. Бовери, О. Гертвиг, 1884) деление ядра, была подготовлена почва для понимания перераспределения наследственного материала по дочерним клеткам в ходе их деления. В. Вальдейер в 1888 г. предложил термин хромосома. Был обстоятельно изучен процесс оплодотворения у животных и растений (О. Гертвиг, 1876; Н. Н. Горожанкин, 1880; Э. Страсбургер, 1884; и др.). Работы ботаников и животноводов подготовили почву для быстрого признания законов Г. Менделя после их переоткрытия в 1900 г.

Открытие Г. Менделем законов наследования

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому ботанику-любителю Иоганну Грегору Менделю. В его работах, выполнявшихся в период с 1856 по 1863 г., были раскрыты основы законов наследственности.

Мендель следующим образом формулировал задачу своего исследования. "До сих пор,- отмечал он во "Вступительных замечаниях" к своей работе,- не удалось установить всеобщего закона образования и развития гибридов" и продолжал: "Окончательное решение этого вопроса может быть достигнуто только тогда, когда будут произведены детальные опыты в различнейших растительных семействах. Кто пересмотрит работы в этой области, тот убедится, что среди многочисленных опытов ни один не был произведен в том объеме и таким образом, чтобы можно было определить число различных форм, в которых появляются потомки гибридов, с достоверностью распределить эти формы по отдельным поколениям и установить их взаимные численные отношения" * .

* (Г. Мендель. Опыты над растительными гибридами. М., "Наука", 1965, стр. 9 - 10. )

Первое, на что Мендель обратил внимание,- это выбор объекта. Для своих исследований Мендель избрал горох Pisum sativum L. Основанием для такого выбора послужило, во-первых, то, что горох - строгий самоопылитель, и это резко снижало возможность заноса нежелательной посторонней пыльцы; во-вторых, в то время имелось достаточное число сортов гороха, различавшихся по одному, двум, трем и четырем наследуемым признакам.

Мендель получил от различных семеноводческих ферм 34 сорта гороха. В течение двух лет он проверял, не засорены ли полученные сорта, сохраняют ли они свои признаки неизменными при размножении без скрещиваний. После такого рода проверки он отобрал для экспериментов 22 сорта.

Едва ли не самым существенным во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Мендель впервые осознал, что, только начав с самого простого случая - различия родителей по одному-единственному признаку - и постепенно усложняя задачу, можно надеяться распутать клубок фактов. Строгая математичность его мышления выявилась здесь с особенной силой. Именно такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение исходных данных. Он не только точно определял, к какому этапу работы следует перейти, но и математически строго предсказывал будущий результат. В этом отношении Мендель стоял выше всех современных ему биологов, изучавших явления наследственности уже в XX в.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Во всех без исключения опытах с 7 парами сортов было подтверждено явление доминирования в первом поколении гибридов, обнаруженное Сажрэ и Нодэном. Мендель ввел понятие доминантного и рецессивного признаков, определив доминантными признаки, которые переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивными те, которые становятся при гибридизации скрытыми. Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков для случаев моно-, ди-, тригибридного и более сложных скрещиваний. Мендель особенно подчеркивал среднестатистический характер открытой им закономерности.

Для дальнейшего анализа наследственной природы полученных гибридов Мендель изучил еще несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных элементарных признаков (доминантных и рецессивных), отмеченное Сажрэ и Нодэном.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличимых от доминантных, но являющихся смешанными (гетерозиготными) по своей природе. Правильность последнего положения Мендель подтвердил, кроме того, путем обратных скрещиваний с родительскими формами.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками (наследственными факторами) и определяемыми ими признаками организма.

Внешний вид организма (фенотип, по терминологии В. Иоганнсена, 1909) зависит от сочетания наследственных задатков (сумма наследственных задатков организма стала, по предложению Иоганнсена, именоваться генотипом, 1909). Этот вывод, с неизбежностью следовавший из экспериментов Менделя, был им подробно рассмотрен в разделе "Зачатковые клетки гибридов" той же работы "Опыты над растительными гибридами". Мендель впервые четко сформулировал понятие дискретного наследственного задатка, не зависящего в своем проявлении от других задатков * . Эти задатки сосредоточены, по мнению Менделя, в зачатковых (яйцевых) и пыльцевых клетках (гаметах). Каждая гамета несет по одному задатку. Во время оплодотворения гаметы сливаются, формируя зиготу; при этом в зависимости от сорта гамет, возникшая из них зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами. Это положение легло в основу фундаментального закона Менделя - закона чистоты гамет. Его предположение о наличии элементарных наследственных задатков - генов было подтверждено всем последующим развитием генетики и было доказано исследованиями на разных уровнях - организменном (методами скрещиваний), субклеточном (методами цитологии) и молекулярном (физико-химическими методами). По предложению У. Бэтсона (1902), организмы, содержащие одинаковые задатки, стали называть гомозиготными, а содержащие разные задатки соответствующего признака - гетерозиготными по этому признаку.

* (Впоследствии эти задатки В. Иоганнсен (1909) назвал генами. )

Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, опередили развитие науки более чем на четверть века. О материальных носителях наследственности, механизмах хранения и передачи генетической информации и внутреннем содержании процесса оплодотворения тогда почти ничего еще не было известно. Даже умозрительные гипотезы о природе наследственности, о которых говорилось выше, были сформулированы позже. Этим объясняется то, что работа Менделя не получила в свое время никакого признания и оставалась неизвестной вплоть до вторичного переоткрытия законов Менделя К. Корренсом, К. Чермаком и Г. де Фризом в 1900 г.

Развитие биометрических методов изучения наследственности

Индивидуальные различия даже между близкородственными организмами вовсе не обязательно связаны с различиями в генетической структуре этих особей; они могут быть вызваны неодинаковыми условиями жизни. Поэтому делать заключения о генетических различиях между видами, разновидностями, сортами и линиями можно только на основании анализа большого числа особей. Первым, кто привлек внимание к математическим закономерностям в индивидуальной изменчивости, был бельгийский математик и антрополог А. Кэтлэ. Он явился одним из основателей статистики и теории вероятностей. Кэтлэ обратил особое внимание на изучение отклонений, в ряду сходных индивидуумов от средней количественной характеристики изучаемого признака. Однако в генетическом плане наиболее важным оставался вопрос о возможности передачи по наследству уклонений от средней количественной характеристики признака, наблюдаемых у отдельных индивидуумов. Значимость этого вопроса стала особенно очевидной после создания Дарвином теории естественного отбора. Для чисто практических целей необходимо было выяснить, будут ли и в какой мере наследоваться те индивидуальные изменения, которые наблюдаются часто в селекционной практике у отдельных растений, и можно ли их закрепить в потомстве.

Выяснением этого вопроса занялись несколько исследователей. По своей значимости выделились работы Гальтона, который собрал данные о наследовании роста у человека. Он проанализировал рост 204 семейных пар и 928 их взрослых детей. Затем Гальтон изучил наследование величины венчика цветка у душистого горошка и пришел к выводу, что потомству передается лишь небольшая часть уклонений, наблюдаемых у родителей. Гальтон попытался придать своему наблюдению математическое выражение, положив этим начало большой серии работ по математико-статистическим основам наследования.

Последователь Гальтона К. Пирсон продолжил эту работу в более широких масштабах. Вокруг Пирсона быстро создалась группа исследователей, основавших журнал "Биометрика" (1902).

Рассуждениям английских биометриков о характере смешения признаков родителей при скрещиваниях, подкрепленным математическими выкладками, но не учитывавшим, как правило, биологической сущности явлений наследственности, был нанесен удар вторичным открытием законов Менделя. Наиболее серьезное и ставшее классическим исследование вопросов, поднимавшихся Гальтоном, Пирсоном и их последователями, было выполнено в 1903 - 1909 гг. В. Иоганнсеном, обратившим главное внимание на изучение генетически однородного материала (потомства от близкородственного скрещивания, названного Иоганнсеном чистой линией). Анализ, проведенный Иоганнсеном, позволил ему подойти к истинному пониманию роли наследуемого (генотипического) и ненаследуемого компонентов в индивидуальной изменчивости. Исходя из полученных результатов, Иоганнсен дал точное определение генотипа и фенотипа и заложил основы современного понимания роли индивидуальной изменчивости. Выводы Иоганнсена, полученные в опытах с растениями, вскоре были подтверждены и на зоологическом материале.

Цитологические основы генетики

Предвидения Менделя получили также подтверждение и на совершенно ином уровне исследований. В 70 - 80-х годах XIX в. были описаны митоз и поведение хромосом во время деления клетки, что навело на мысль,. что эти структуры ответственны за передачу наследственных потенций от материнской клетки дочерним. Деление материала хромосом на две равные части как нельзя лучше свидетельствовало в пользу гипотезы, что именно в хромосомах сосредоточена генетическая память. Эта точка зрения еще более упрочилась после описания процессов, предшествующих созреванию половых клеток и оплодотворению (см. главу 26). Изучение хромосом у животных и растений привело к выводу, что каждый-вид живых существ характеризуется строго определенным числом хромосом. Это число стало надежным систематическим признаком.

Открытый Э. ван Бенеденом (1883) факт, что число хромосом в клетках тела (соматических клетках) вдвое больше, чем в половых клетках, можно было легко объяснить простым рассуждением: поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер) и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Точное описание процесса редукционного деления (мейоза), осуществленное в 90-х годах XIX в., позволило уже в начале XX в. должным образом оценить установленные Менделем закономерности наследственности.

В 1900 г. независимо друг от друга трое ботаников - К. Корренс в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее Менделем закономерности и, натолкнувшись на его работу, вновь опубликовали ее в 1.901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления Менделя о наследственных факторах, о наличии одинарного набора факторов в гаметах и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессах наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом.

Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттон и Бовери положили начало новому направлению генетики - хромосомной теории наследственности.

Обоснование хромосомной теории наследственности

Согласно законам Менделя, проявление каждого наследственного фактора не зависит от других факторов. Его анализ моно-, ди- и тригибридного скрещивания экспериментально подтвердил этот вывод.

После переоткрытия менделевских закономерностей развернулось изучение этих закономерностей у всевозможных видов животных и растений. Одна из кажущихся неудач постигла У. Бэтсона и Р. Пеннета, изучавших в 1906 г. наследование окраски венчика и формы пыльцы у душистого горошка. Согласно Менделю, распределение фенотипов при дигибридном скрещивании должно подчиняться отношению 9:3:3:1. Вместо этого Бэтсон и Пеннет зарегистрировали расщепление в отношении 35:3:3:10. Создавалось впечатление, что факторы пурпурной окраски и сморщенной пыльцы имеют тенденцию при перекомбинациях задатков оставаться вместе. Это явление авторы назвали "взаимным притяжением факторов", но природу его им выяснить не удалось.

В 1909 г. к детальному изучению этого вопроса приступил Т. Г. Морган. Прежде всего он четко сформулировал исходную гипотезу. Теперь, когда уже было известно, что наследственные задатки находятся в хромосомах, закономерно было ответить на вопрос, всегда ли будут выполняться численные закономерности, установленные Менделем? Мендель совершенно справедливо считал, что такие закономерности будут верны тогда и только тогда, когда изучаемые факторы будут комбинироваться при образовании зигот независимо друг от друга. Теперь, на основании хромосомной теории наследственности, следовало признать, что это возможно лишь в том случае, когда гены расположены в разных хромосомах. Но так как число последних по сравнению с количеством генов невелико, то следовало ожидать, что гены, расположенные в одной хромосоме, будут переходить из гамет в зиготы совместно. Следовательно, соответствующие признаки будут наследоваться группами.

Проверку этого предположения осуществили Морган и его сотрудники К. Бриджес и А. Стертевант в исследованиях с плодовой мушкой - дрозофилой (Drosophila melanogaster). Выбор этого объекта по многим причинам можно считать крупной удачей. Во-первых, дрозофила имеет весьма небольшой период развития (всего 10 - 12 дней); во-вторых, благодаря высокой плодовитости дает возможность вести работу с громадными популяциями; в-третьих, может легко культивироваться в лабораторных условиях; наконец, у нее имеется всего четыре пары хромосом.

Вскоре у дрозофилы было обнаружено большое количество разнообразных мутаций, т. е. форм, характеризующихся различными наследственными признаками. У нормальных или, как говорят генетики, дрозофил дикого типа цвет тела серовато-желтоватый, крылья серые, глаза темного кирпично-красного цвета, щетинки, покрывающие тело, и жилки на крыльях имеют вполне определенное расположение. У обнаруживавшихся время от времени мутантных мух эти признаки были изменены: тело, например, было черное, глаза белые или иначе окрашенные, крылья зачаточные и т. д. Часть особей несла не одну, а сразу несколько мутаций; например, муха с черным телом могла, кроме того, обладать зачаточными крыльями. Многообразие мутаций позволило Моргану приступить к генетическим опытам. Прежде всего он доказал, что гены, находящиеся в одной хромосоме, передаются при скрещиваниях совместно, т. е. сцеплены друг с другом. Одна группа сцепления генов расположена в одной хромосоме. Веское подтверждение гипотезы о сцеплении генов в хромосомах Морган получил также при изучении так называемого сцепленного с полом наследования.

Благодаря цитолого-генетическим экспериментам (А, Стертевант, К. Бриджес, Г. Дж. Мёллер, 1910) удалось установить участие некоторых хромосом в определении пола. У дрозофилы, например, наряду с тремя парами хромосом (аутосом), не имеющих отношения к определению пола, была обнаружена пара половых хромосом. Половые хромосомы, в свою очередь оказались двух типов - длинные палочковидные Х-хромосомы и маленькие изогнутые Y-хромосомы. Их сочетаниями и определяется пол мухи. Дальнейшие эксперименты показали, что у дрозофилы, как и у большинства млекопитающих (в том числе человека), амфибий, рыб и большинства растений попадание в зиготу двух Х-хромосом приводит к формированию женской особи, объединение же одной Х-хромосомы и одной Y-хромосомы дает начало мужской особи * . Следовательно, все женские гаметы одинаковы - они несут по одной Х-хромосоме; мужские особи дают гаметы двух типов: половина содержит Х-хромосому, половина - Y-хромосому. Поэтому при оплодотворении половина зигот получает набор хромосом XX, а половина - XY, и отношение полов равняется 1:1.

* (У большинства птиц, насекомых и части растений определение пола происходит иным образом: мужской пол получается от сочетания двух Х-хромосом; женский пол характеризуется сочетанием Х- и Y-хромосом )

Определив, что ген окраски глаз дрозофилы локализован в Х-хромосоме, и проследив за поведением генов в потомстве определенных самцов и самок, Морган и его сотрудники получили убедительное подтверждение предположения о сцеплении генов.

Таким образом, в развитии генетики выделяются два важных этапа. Первый, базирующийся на гибридологических исследованиях, связан с открытием Менделя - доказательством наличия элементарных наследственных факторов, установлением характера взаимодействия этих факторов (правило доминантности - рецессивности) и выяснением количественных закономерностей в расщеплении признаков при скрещиваниях. Второй этап, связанный с успехами цитологических исследований, завершился доказательством того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах. В частности, генетическими методами были обнаружены четыре группы сцепления у Drosophila melanogaster, что совпадало с данными цитологических исследований. На очереди стоял вопрос о порядке расположения генов в хромосомах.

Проблема внутрихромосомной локализации генов

Тщательный анализ возникновения мутаций у дрозофилы позволил обнаружить большое число разнообразных наследственных изменений, причем выяснилось, что каждый ген может давать значительное число мутаций. Например, были обнаружены мутанты с красными, белыми, пурпурными, эозиновыми, гранатовыми, цвета слоновой кости, рыжими, молочными, киноварными глазами. Подобной изменчивостью характеризуются и другие гены.

По мере обнаружения все новых и новых мутаций увеличивался объем сведений о. локализации отдельных генов в той или иной хромосоме. Ключом для решения вопроса о расположении генов по длине хромосомы послужило изучение Морганом явлений нарушения сцепления генов в результате обмена участками между хромосомами (длиной от одного до нескольких генов), названного им кроссинговером (по-английски, перекрест).

Существенным этапом в изучении кроссинговера явилось установление того факта, что определенные гены перемещаются из хромосомы в хромосому с определенной специфичной для них частотой. Морган высказал предположение, что чем дальше друг от друга по длине хромосомы расположены гены, тем легче может произойти кроссинговер между ними, ибо для разделения близко лежащих генов необходимо, чтобы разрыв прошел между ними. Вероятность такого разрыва, очевидно, мала. А если это так, то процент особей, у которых осуществился кроссинговер, от общего числа исследованных особей может служить мерой расстояния между генами в хромосоме. За выдающиеся работы в области генетики Морган был удостоен в 1933 г. Нобелевской премии.

В 1913 г. Стертевант составил первую карту половой Х-хромосомы дрозофилы, построенную на основании численных данных по сцеплению и кроссинговеру, наблюдаемых у шести сцепленных с полом генов. К 1916 г. у дрозофилы уже была изучена локализация в хромосомах сотен генов, и они были картированы по всем четырем хромосомам. Метод составления генетических карт, разработанный на дрозофиле, был перенесен на растения (кукуруза, львиный зев) и животные (мыши).

Составление генетических карт - процедура весьма трудоемкая. Генные структуры хромосом поддаются легкой расшифровке у тех организмов, которые быстро размножаются. Последнее обстоятельство является основной причиной того, что самые подробные карты существуют для дрозофилы, ряда бактерий и бактериофагов, а наименее подробные для растений. Составление карт для долгоживущих организмов (животные, многолетние растения) - дело будущего.

Следует отметить, что чисто генетические методы определения локализации генов в хромосомах так или иначе давали лишь косвенные доказательства хромосомной теории наследственности и последнюю продолжали оспаривать некоторые генетики (например, Р. Гольдшмидт, 1917). Прямым доказательством этой теории послужили обнаруженные К. Бриджесом у дрозофилы явления нерасхождения половых хромосом (1913, 1916) и выпадения четвертой хромосомы (1921). В этих случаях генетические предсказания, основанные на скрещиваниях, подтвердились при изучении кариотипов под микроскопом.

Наконец, были получены прямые цитологические доказательства существования кроссинговера у дрозофилы. Еще в 1909 г. бельгийский исследователь Ф. Янсенс натолкнулся на любопытный факт. В профазе первого мейотического деления парные хромосомы подходили друг к другу, выстраивались параллельно, а затем, коснувшись концами, быстро смыкались.

Несмотря на полный контакт между хромосомами саламандр, с которыми работал Янсенс, очертания каждой из хромосом были видны достаточно четко. Благодаря этому удалось заметить, что во время перекручивания хромосом в месте их переплетения, которое он назвал хиазмой, произошел обмен кусками хромосом.

Однако с достоверностью подтвердить методами цитологии наличие обмена не удавалось до тех пор, пока немецкий исследователь К. Штерн (1931) не использовал так называемое явление транслокации, т. е. переноса оторвавшегося куска одной хромосомы на другую хромосому. Ему удалось при помощи транслокации перенести кусок Y-хромосомы дрозофилы к Х-хромосоме, после чего последнюю без труда можно было обнаружить на цитологических препаратах. Кроме того, возникшая при этом линия мух несла два генетических отличия (их Х-хромосома имела два легко обнаруживаемых фенотипически так называемых маркирующих рецессивных гена).

Вторым этапом работы был отбор линии двух мух с транслокацией иного рода. В этом случае наблюдения велись над Х-хромосомой, разорвавшейся пополам, после чего одна из ее половин присоединилась к маленькой Y-хромосоме. Оставшийся кусок Х-хромосомы опять-таки был хорошо отличим как цитологически, так и генетически - маркирующие гены у нее были доминантными.

Таким образом, у Штерна оказались две линии дрозофил, четко отличавшиеся друг от друга Х-хромосомами. Соединив обе маркированные Х-хромосомы в зиготе одной самки, он дождался кроссинговера, распознав его по характеру проявления генов. Цитологически проанализировав клетки потомства мухи, полученной в результате кроссинговера, он смог обнаружить результат кроссинговера в наглядной форме под микроскопом: длинная Х-хромосома обменялась своим большим участком с маленьким куском короткой Х-хромосомы, в результате чего обе хромосомы имели теперь примерно одинаковую длину. Позже аналогичный эксперимент на кукурузе произвела Б. Мак-Клинток (1944).

Искусственное получение мутаций

Крупнейшим достижением экспериментальной генетики было обнаружение возможности искусственно вызывать мутации при помощи разнообразных физических и химических агентов. Г. А. Надсон и Г. С. Филиппов (1925) получили мутации у дрожжей под действием радия и рентгеновых лучей; Г. Мёллер * (1927) - при помощи рентгеновых лучей у дрозофилы, а Л. Стадлер (1928) - посредством воздействия этими же лучами у кукурузы.

* (За изучение явлений сцепления и кроссинговера, а также открытие искусственного мутагенеза Г. Мёллеру была присуждена в 1946 г. Нобелевская премия. )

В изучении проблемы изменчивости начался новый, исключительно плодотворный период. В короткий срок мутагенный эффект облучения был исследован на многих объектах. Было установлено, что под действием облучения могут возникать мутации любых типов. Вместе с тем для изучения проблемы воздействия лучистой энергии на биологические системы решающее значение имело выяснение мутагенной активности различных родов излучений. Оказалось, что все известные виды излучений способны вызывать наследственные изменения. В середине 30-х годов была сформулирована теория, описывающая кинетические зависимости инактивирующего и мутагенного эффекта ионизирующих излучений - так называемая "теория мишени". Важнейшие эксперименты, ставшие основой этой теории, были выполнены в период 1931 - 1937 гг. Н. В. Тимофеевым-Ресовским, М. Дельбрюком, Р. Циммером и другими исследователями.

Важным достижением на пути к искусственному получению мутаций явились работы В. В. Сахарова (1932, 1938) и М. Е. Лобашева (1934, 1935) по химическому мутагенезу. Сахаров показал мутагенное действие иода, а Лобашев - аммония. Новый этап изучения роли химических факторов в процессе мутаций был открыт И. А. Рапопортом (1943, 1946, 1947) и Ш. Ауэрбах (1943), указавшими на мощное мутагенное действие некоторых химических веществ.

В настоящее время известно большое количество веществ, усиливающих мутационный процесс. Разработана теория действия мутагенных соединений на наследственные структуры, интенсивно разрабатываются проблемы специфичности действия мутагенов.

Классификация мутаций

Большой материал, накопившийся в области изучения наследственной изменчивости, позволил создать классификацию типов мутаций.

Было установлено существование трех классов мутаций - генных, хромосомных и геномных. К первому классу относятся изменения, затрагивающие лишь один ген. В этом случае либо полностью нарушается работа гена и, следовательно, организм теряет одну из функций, либо изменяется его функция. Хромосомные мутации, т. е. изменения в структуре хромосом, в свою очередь, подразделяются на несколько типов. Кроме транслокаций, о которых шла речь выше, может произойти удвоение, утроение и т. д. отдельных участков хромосомы. Такие мутации называют дупликацией. Иногда оторвавшийся кусок хромосомы может остаться в той же хромосоме, но окажется в перевернутом виде; при этом порядок расположения генов в хромосоме изменяется. Этот тип мутаций называют инверсией. Если утрачивается участок хромосомы, говорят о делеции, или нехватке. Все эти типы хромосомных перестроек объединяют под общим термином - хромосомные аберрации.

Наконец, мутации могут выражаться в изменении числа хромосом. Такие мутации именуют геномными. Оказалось, что отдельные хромосомы могут удваиваться или теряться, в результате чего образуются гетероплоиды. Чаще набор хромосом увеличивается в кратное число раз и возникают полиплоиды, т. е. клетки или целые организмы с избыточными наборами хромосом.

Изучение наборов хромосом (кариотипов) различных видов выявило широкую распространенность полиплоидии в природе, особенно среди растений, для многих из которых описано большое количество полиплоидных рядов. Например, представители рода Triticum располагаются в такой ряд - Triticum топососсит имеет 14 хромосом (диплоиды); Tr. turgidum, Tr. durum несут 28 хромосом (тетраплоиды); у Tr. vulgare и Tr. spelta число хромосом равно 42 (гексаплоиды). В роде Solanum прослежен ряд: 12, 24, 36, 48, 60, 72, 96, 108, 144 хромосом (гаплоидное число хромосом в этом роде может умножаться до 24 раз). Род Rosa характеризуется рядом: 14, 21, 28, 35, 42, 56 хромосом. Полиплоидные ряды не обязательно содержат члены с удвоенными, учетверенными, ушестеренными и т. д. наборами хромосом. Так, в роде Crepis наблюдается четко выраженная полиплоидия, но число хромосом в ряду возрастает следующим образом: 6, 8, 10, 12, 16, 18, 24, 40, 42. Таких родов в растительном царстве много.

Искусственное получение полиплоидов

После обнаружения естественных полиплоидов удалось искусственно получить полиплоиды различных организмов. Это открытие явилось важнейшим достижением экспериментальной генетики.

Одними из первых искусственных полиплоидов оказались томаты и паслен с учетверенными наборами хромосом, полученные Г. Винклером в 1916 г. С открытием полиплоидогенных веществ (алкалоид колхицин, продукт возгонки нефти - ацетанафтен и др.) стало возможным необычайно ускорить получение полиплоидов и на их базе начать селекцию новых, высокоурожайных сортов растений.

В 1927 г. Г. Д. Карпеченко методом полиплоидии впервые в мире создал новый, не встречающийся в природе организм, названный Raphanobrassica, в котором хромосомы редьки (Raphanus) объединились с хромосомами капусты (Brassica). В зависимости от содержания хромосом того или иного рода в клетках нового растения менялась форма его плодов. Так, при равном количестве тех и других хромосом плод был наполовину редечным, наполовину капустным; при сочетании 9 редечных хромосом и 18 капустных он на две трети был капустным и на треть редечным и т. д. Оценивая свою работу, Карпеченко отмечал, что она может рассматриваться как экспериментальное обоснование теории гибридного происхождения полиплоидных видов. Шведский генетик А. Мюнтцинг (1930), применив метод скрещиваний, сумел из двух 16-хромосомных видов пикульника (Galeopsis speciosa, G. pubescens) получить третий - 32-хромооомный - G. tetrahit (1932).

В дальнейшем было выяснено, что полиплоидия не ограничивается миром растений. Применив тот же метод полиплоидизации, Б. Л. Астауров добился в 40-х годах получения плодовитых гибридов при скрещивании шелкопрядов двух видов Воmbух mori и В. mandarina.

Изучение генетических основ эволюции

Доказательство положения о неисчезаемости рецессивных признаков при скрещивании организмов, выдвинутого Менделем, оказалось очень важным для развития эволюционного учения. Это положение позволило преодолеть возражение, высказанное английским математиком Ф. Дженкином, будто вновь возникающие в природе наследственные изменения не могут распространяться в природе из-за "растворения" среди окружающей их массы нормальных неизменных особей. После переоткрытия законов Менделя и доказательства, что факторы, определяющие развитие наследуемых признаков, передаются потомкам не дробясь, "кошмар Джен-кипа" был развеян. Стало ясно, что все мутации, возникающие в естественных условиях, не исчезают, а переходят либо в рецессивное состояние, либо остаются доминантными (см. также главу 17).

В 1904 г. К. Пирсон обосновал так называемый закон стабилизирующего скрещивания, согласно которому в условиях свободного скрещивания при любом исходном соотношении численности гомозиготных и гетерозиготных родительских форм в результате первого же скрещивания внутри сообщества устанавливается состояние равновесия. В 1908 г. английский математик Г. Харди пришел к выводу, что в неограниченно больших популяциях при наличии свободного скрещивания, при отсутствии давления мутаций, миграций и отбора относительная численность гомозиготных (как доминантных, так и рецессивных) и гетерозиготных особей будет сохраняться постоянной при условии равенства произведения числа гомозиготных (доминантных на рецессивных) особей квадрату половины числа гетерозиготных форм. Таким образом, согласно закону Харди (называемому часто также законом Харди - Вейберга), в популяции при наличии свободного скрещивания должно существовать совершенно определенное и равновесно поддерживаемое распределение мутантных форм. Следует подчеркнуть, что хотя математически строгая форма указанных закономерностей давала вполне четкое представление о генетических основах эволюционного процесса, эти закономерности длительное время не были признаны биологами-эволюционистами. Между дарвинизмом и генетикой существовала пропасть, а работы в одной области велись в полном отрыве от работ в другой.

Лишь в 1926 г. С. С. Четвериковым была опубликована большая работа, впервые привлекшая внимание к общебиологическому значению выкладок Пирсона, Харди и др. Четвериков подробно рассмотрел биолого-генетические основы эволюции (роль мутаций, или геновариаций, по его терминологии, распространение мутаций в условиях свободного скрещивания, роль естественного отбора и изоляции, роль генотипической среды) и заложил основы новой научной дисциплины - популяционной генетики. Дальнейшее развитие популяционной генетики было связано с работами С. Райта, Р. Фишера, Н. П. Дубинина, Ф. Г. Добжанского и др.

Четвериков и его ученики Н. К. Беляев, С. М. Гершензон, П. Ф. Рокицкий и Д. Д. Ромашов впервые осуществили экспериментально-генетический анализ природных популяций дрозофилы, полностью подтвердивший их насыщенность рецессивными мутациями. Аналогичные результаты были получены Е. А. и Н. В. Тимофеевыми-Ресовскими при изучении популяций дрозофилы (1927 - 1931), а также другими исследователями.

Идеи Четверикова послужили основой для дальнейшего изучения генетики популяций. Закономерности, выведенные Пирсоном и Харди, были справедливы лишь для "идеальных" популяций. Последующий анализ выводов этих авторов показал, что они приложимы только к абстрактной, не ограниченной по численности популяции; в реальных же популяциях наблюдается отклонение фактической частоты сохранения мутаций от ожидаемой. Этот процесс осуществляется согласно вероятностным законам и приводит к резкой перестройке генетической структуры популяции. Поскольку из всего потомства любой пары родителей достигают половой зрелости и дают потомство в среднем только две особи, то возможность сохранения в популяции вновь возникшей мутации зависит от многих причин (вероятности ее гибели; частоты повторного возникновения такой же мутации; различий в численности потомков, остающихся от разных родителей; степени изоляции в популяции и т. д.).

Было установлено, что сохранение и распространение мутаций в популяции определяется генетико-автоматическими процессами. Детальный анализ этих процессов был проведен Ромашовым (1931), Дубининым (1931) и Райтом (1921, 1931). Последний назвал их "явлением дрейфа генов в популяции", а Четвериков - "генетико-стохастическими", подчеркнув их вероятностно-статистическую природу. Статистический анализ, подкрепленный экспериментами в реальных популяциях, показал, что в среднем из 104 различных одновременно возникших мутаций через 100 поколений остается около 150 мутаций, а через 500 поколений - только 40 * . Таким образом, в результате генетико-автоматических процессов уничтожается множество возникающих мутаций и лишь некоторые доводятся до уровня заметных концентраций. Так как отбор в популяции в сильнейшей степени зависит от средних концентраций аллелей, то повышение численности отдельных мутаций за счет генетико-автоматических процессов должно приводить к резкому увеличению скорости отбора в популяции. В силу вероятностной природы генетико-автоматических процессов они могут то устранять отдельные мутации, то поднимать их численность, позволяя отбору осуществлять механизм "проб и ошибок". Генетико-автоматические процессы постоянно выносят редкие мутации до уровня действия отбора и этим помогают последнему быстро "пересмотреть" новые варианты мутантов. Если отбор бракует мутации, они быстро уходят в зону низких концентраций или вовсе исчезают из популяции; если отбор их подхватывает, они быстро распространяются в популяции, минуя длинную фазу пребывания в низкой концентрации, недоступную отбору. Таким образом, генетико-автоматические процессы ускоряют эволюцию новых мутаций за счет сокращения ранних этапов размножения вновь возникших мутаций.

* (И. П. Дубинин. Эволюция популяций и радиация. М., Атомиздат, 1966. )

Детальное изучение генетической структуры природных популяций и скорости распространения мутаций в природе превратилось сейчас в область биологии, активно разрабатываемую на основе математических методов. Большое значение для развития этой области имеют модельные эксперименты, в которых исследуется судьба экспериментально созданных популяций и определяется роль различных форм изоляции и отбора.

Проблема дробимости гена

К началу 30-х годов XX в. сложились основы теории гена. Уже первые достижения гибридологического анализа поставили проблему дискретности наследственного материала. В опытах Менделя это представление получило надежное экспериментальное подтверждение. Считалось, что ген отвечает за развитие одного признака и передается при скрещиваниях как неделимое целое. Открытие мутаций и кроссинговера первоначально также подтверждали неделимость генов. Так, А. Кателл получил из мутантных (желтых) дрозофил других мутантов, но при этом любая новая мутация захватывала весь ген. Н. В. Тимофеев-Ресовский (1925- 1929), Г. Мёллер (1928) и М. Демерец (1928), получив так называемые обратные мутации (т. е. превратив мутантных мух в нормальных), удостоверились, что одно состояние гена целиком сменяется новым. При изучении кроссинговера было также установлено, что во время этого процесса могут передаваться куски хромосом разной длины, но минимальный передаваемый участок соответствует одному гену. Разрывов в пределах гена никогда не наблюдали. В результате обобщения всех этих данных определение гена получило следующую формулировку: ген - это элементарная единица наследственности, характеризующаяся вполне определенной функцией, мутирующая во время кроссинговера как целое. Иначе говоря, ген - единица генетической функции, мутации и кроссинговера.

В 1928 г. эта, казалось, вполне устоявшаяся теория неделимости гена претерпела первое ограничение. Сразу после обнаружения мутагенного действия рентгеновых лучей они были использованы во многих лабораториях мира для получения мутаций. Такая работа велась и в лаборатории А. С. Серебровского в Биологическом институте им. К. А. Тимирязева. В 1928 г. в той же лаборатории Н. П. Дубинин начал исследовать действие рентгеновых лучей на дрозофил и обнаружил необычную мутацию. Образование щетинок на теле мух контролируется особым геном scute. Мутация гена scute, впервые обнаруженная американским генетиком Пейном (1920), не раз возникала в экспериментах, и при ее появлении подавлялось развитие девяти щетинок. Мутация scute, выявленная Дубининым, подавляла развитие всего четырех щетинок. Так как общепринятым было представление о целостном мутировании гена, появление такой мутации казалось совершенно непонятным. В следующем эксперименте была найдена мутация, затрагивавшая уже не 4 или 9, а 18 щетинок на теле мухи. Иными словами, было повреждено как будто сразу два гена. Дубинин обозначил эти мутации символами scute-1, scute-2 и scute-З. Стало ясно, что ген не является неделимой генетической структурой, а представляет собой область хромосомы, отдельные участки которой могут мутировать независимо друг от друга. Это явление было названо Серебровским ступенчатым аллеломорфизмом.

Вслед за Н. П. Дубининым И. И. Агол нашел четвертую мутацию - scute-4, не совпадавшую с первыми тремя; А. Е. Гайсинович - scute-5; затем А. С. Серебровский обнаружил мутацию scute-б; С. Г. Левит - scute-7; Б. Н. Сидоров - scute-8; Н. П. Дубинин - мутации scute-9, scute-10, scute-11, scute-13, scute-15, scute-16, scute-17; H. И. Шапиро - scute-12; Л. В. Ферри - scute-14. Тем самым явление дробимости гена было окончательно доказано.

Одним из крупных достоинств работ по изучению ступенчатых аллеломорфов был количественный метод учета мутантов. Разработав систему, позволявшую количественно оценивать результат каждой мутации, Серебровский, Дубинин и другие авторы тогда же раскрыли явление дополнения одного мутантного гена другим. При этом нарушенная функция одного гена исправлялась нормальной функцией другого гена. Второй ген, в свою очередь, мог быть дефектен в другом участке, нормальном у первого гена. Это явление было впоследствии переоткрыто на микроорганизмах и получило название комплементации. За цикл работ по хромосомной теории наследственности и теории мутаций Дубинин был удостоен в 1966 г. Ленинской премии.

Показав мутационную дробимость гена, Серебровский и сотрудники его лаборатории, тем не менее, долгое время не могли подтвердить дробимость гена при помощи кроссинговера. Дело в том, что разрешающая способность кроссинговера в отношении хромосом высших организмов весьма ограниченна. Чтобы обнаружить разрыв гена, требовалось проверить огромное число мух. Организовать такой эксперимент удалось только в 1938 г., когда Н. П. Дубинин, Н. Н. Соколов и Г. Г. Тиняков смогли разорвать ген scute и проверить свой результат цитологически на гигантских хромосомах слюнных желез дрозофилы. Окончательное решение вопроса, делим ли ген не только мутационно, но и механически, было достигнуто в работах М. Грина (1949), Э. Льюиса (1951) и Г. Понтекорво (1952). Было окончательно установлено, что считать ген необычайно устойчивой, далее неделимой структурой неправильно. Настало время разработать новую теорию гена, определить конкретные физические структуры, ответственные за реализацию различных генетических функций. Решить эти проблемы на сложных многоклеточных организмах ввиду чисто технических трудностей не представлялось возможным, ибо для этого необходимо было исследовать десятки и сотни тысяч мух. На помощь пришли микроорганизмы.

Переход к генетическим исследованиям на микроорганизмах явился крупнейшим шагом вперед в изучении генетических проблем. Новые объекты исследования обладали тем преимуществом, что они давали огромные популяции, чрезвычайно быстро размножались, имели предельно простой генетический аппарат (их хромосомы состоят из одной молекулы ДНК), у них были четкие, хорошо селекционируемые мутанты. С развитием экспериментов на микроорганизмах генетика перешла на молекулярный уровень исследований, принесших разгадку многих тайн организации живого.

Понравилась статья? Поделитесь с друзьями!