IT в мире стоматологии. Цифровые технологии могут быть использованы на всех этапах стоматологического лечения

Медицина не стоит на месте, и особенно активно развивается стоматология. Что логично, информационные технологии тоже задействованы, как мощные и точные средства. В последние годы появилось даже понятие «компьютерной стоматологии». Вероятно, все новейшие технологии в стоматологии, какие появятся в будущем, будут связаны именно с компьютерной техникой.

Машины в помощь людям

Цифровые технологии, в первую очередь, актуальны в ортопедическом лечении, на всех его этапах. Уже разработаны и внедряются системы, которые полностью самостоятельно заполняют необходимые документы. Автоматизированная работа включает моделирование полости рта конкретного клиента с рекомендациями, какие именно пути лечения в данной ситуации должны стать оптимальными.

Новейшие технологии в стоматологии позволяют графические данные анализировать и обрабатывать предельно быстро, а обследование больного производить детально, без упущений. Результаты, получаемые в ходе исследований, можно продемонстрировать как больному, так и коллегам.

Надо сказать, первые подобные устройства стоили огромных денег, но быстро выросшая конкуренция изменила ситуацию. Есть камеры для фото- и видеосъемки в полости рта, которые можно подключить к ПК. Пользоваться подобной техникой просто. В передовых клиниках практически не обращаются к традиционному рентгену, вместо него применяются радиовизиографы, не облучающие пациента.

Трехмерная медицина: будущее уже в наших руках

Эффективность показали компьютерные программы, записывающие и анализирующие мимику больного. Это тоже новые технологии в стоматологии. Протезирование становится намного проще, требует меньше времени, если предварительно врач имеет полноценную анимированную модель полости рта на экране своего компьютера, где он может повернуть ее и изучить под любым углом. Подобные программы называются 3D-артикуляторами.

Чтобы подобрать наилучший вариант лечения в конкретном случае, можно воспользоваться компьютерным планированием лечения. Кстати говоря, были разработаны специальные программы контроля анестезии - компьютер теперь может справиться даже с задачей обезболивания.

Нейромышечная стоматология: новые технологии

Только самый современный институт стоматологии новых технологий может позволить себе нейромышечный подход. Преимущество его в том, что учитывается также нейрофизиология ротовой полости пациента. Были разработаны методы изучения, насколько активна жевательная мускулатура, какова идеальная окклюзия.

Наилучший эффект обеспечивается тем, что врач может смоделировать траекторию, по которой движется нижняя челюсть, и работать над протезом с учётом этой информации. Если речь идет о больном с дисфункцией ВНЧС, то именно нейромышечная стоматология - это самый разумный вариант.

Пионером в этой области является американская фирма "Миотроникс". Специалистами компании была разработана система К7, получившая распространение по всему миру. Она применяется в наиболее прогрессивных российских клиниках.

Ортопедия против проблем с зубами

Нашли себе применение новейшие технологии в стоматологии и в работе врачей-ортопедов. Современные материалы и принципиально новый подход к протезированию помогли сократить сроки устранения дефектов полости рта при сохранении высокого уровня надежности.

В первую очередь новые технологии в ортопедической стоматологии - это, конечно, материалы. Поврежденные зубы наращивают при помощи композитов - это наиболее эффективный путь. Материал создается искусственно, в его состав входят:

  • стекло;
  • кварц;
  • мука фарфора;
  • кремниевый оксид.

Преимущество композита - обширная цветовая карта. Пациент может подобрать материал, максимально близкий к родному оттенку зубов. Итак, обновленный зуб будет выглядеть один в один как «родной».

Зачастую применяют в ортопедической Она позволяет сделать действительно красивые и долговечные протезы, поэтому используется в первую очередь для передних зубов. будут похожи на настоящие, даже покрытие их - будто бы эмаль. Керамика совершенно безопасна для здоровья. Укрепление обеспечивается каркасом из металла.

Новинки стоматологии: охвачены все этапы протезирования

Современная ортопедическая стоматология - это еще и новые решения в следующих областях:

  • соединение материалов;
  • облицовка протезов;
  • методы изготовления материалов.

Была разработана методика прочного соединения композита и металла. Она базируется на новых методах обработки металлов: механическом, физико-химическом, совмещенном. В последние годы велик спрос на адгезивные технологии. При обращении к ним можно гарантировать сверхпрочное прилипание.

Применяются новейшие технологии в стоматологии и при работе над винирами и протезами, накладками. Из материалов действительно распространен композит, как наиболее качественный. Посетить стоматолога, чтобы установить такой протез, больше не страшно, да и боли никакой пациент испытывать не будет.

Новинки на вооружении терапевтов-стоматологов

Наиболее актуальны новые технологии в в лечении корневых каналов. Занимается этим направление стоматологии, которое носит название эндодонтия. Главные болезни, изучаемые этой отраслью:

  • пульпиты;
  • периодонтиты.

Если корневые каналы были хорошо пролечены, зуб будет служить еще долго, несмотря на удаление нерва. Но могут возникнуть осложнения, когда патологические процессы распространяются в кости челюсти. Тогда говорят о кистах и гранулемах. Эффективные современные технологии помогут избежать подобной беды.

Одна из наиболее эффективных технологий - это депфорез. Она используется, если предстоит перелечить зуб, который уже лечили ранее устаревшим методом. Незаменима эта технология, если у пациента диагностированы гранулема или киста.

Ну и, конечно, нельзя не сказать о новых материалах, используемых стоматологами-терапевтами. В последнее время распространение получили стеклоиономерные цементы, показавшие себя наиболее перспективными. Эти материалы отличаются минимальным уровнем токсичности, но они прочны и красивы. Кроме того, подобные цементы за счет повышенной концентрации фторидов эффективно борются с кариесом.

Зубные коронки: новые технологии на страже здоровья полости рта

Современные зубные коронки изготавливают из специального материала, создаваемого на основе металла и керамики. Удалось автоматизировать процесс проектирования коронок и их изготовления.

CAD/CAM - такое название получили эти прогрессивные технологии в стоматологии. Коронки, изготовленные таким образом, подходят пациенту идеально, а обеспечивается это компьютерным моделированием полости рта, благодаря чему в любой момент врач может изучить самые труднодоступные участки со всех сторон.

CAD/CAM используется для создания протезов и накладок, коронок самых сложных видов и форм. Технология стоит достаточно дорого, но существенно сокращает сроки пребывания у врача и позволяет получить идеальные коронки, чего не скажешь о более старых методах.

На своем здоровье экономить нельзя

Ни для кого не секрет, что стоматология новых технологий в Москве будет стоить недешево. Гораздо меньше денег можно потратить, если обратиться к старым, «дедушкиным» методам, а то и вовсе съездить специально в небольшой городок на периферии Московской области, рассчитывая найти низкий ценник.

Поступать так строго не рекомендуется. Плохие зубные протезы могут испортить всю будущую жизнь и привести ко множеству проблем. Поэтому действительно разумное поведение - это обращение к специалистам, практикующим наиболее современные методы.

Обязательно нужно удостовериться, что в работе используются современные и эффективные материалы.

Если есть возможность посетить клинику, предлагающую компьютерное моделирование, стоит позволить себе это, на ценник.

Опыт пациентов: применить с пользой

Выбирая стоматологическую клинику, обязательно нужно изучить отзывы: узнать у друзей и знакомых, где они лечили зубы, каковы общие впечатления. Собирая информацию, анализировать необходимо не только то, насколько отзывы положительны, но и то, насколько им можно доверять.

Новейшие технологии в стоматологии - это залог безупречной улыбки, о чем и свидетельствуют отзывы довольных пациентов.

Москва, ул. Мишина, д. 38.
м.Динамо. Выходите из 1-го вагона из центра, выходите из метро, перед Вами стадион "Динамо". Идете налево до светофора. По пешеходному переходу переходите на противоположную сторону Театральной аллеи, идете немного вперед. На противоположной стороне остановка. Садитесь в автобус №319. Едете 2 остановки до "ул.Юннатов". Переходите на противоположную сторону улицы. Слева от вас крыльцо- вход в клинику "ЭспаДент". Вы на месте!

г. Москва, ул. Академика Анохина д.60
Выходите из первого вагона из центра в сторону "улица Академика Анохина". Из стеклянных дверей направо. Вдоль лесного массива (по правую руку) по дорожке около 250м. до ул. Академика Анохина. Переходите на противоположную сторону улицы и идете направо, около 250м., до дома №60. В доме предпоследний подъезд, вывеска "Зубы за 1 день". Вы на месте!


Выходите из метро на ст. Савеловская (первый вагон из центра). Проходите до конца подземного перехода и выходите из метро в сторону улицы «Сущевский вал». Идете мимо ресторана "Дядя Коля". Проходите под эстакадой, далее следуете по подземному переходу на противоположную сторону ул. Новослободская. Продолжаете идти по улице Новослободской около 200м, мимо магазина «Электрика». На первом этаже дома №67/69, расположен ресторан «Трактир». Поверните направо, перед вами вывеска "Зубы за 1 день", поднимитесь на второй этаж. Вы на месте!

г. Москва, ул. Новослободская, 67/69
Выходите из метро на ст. Менделеевская (первый вагон из центра). Выходите из метро в сторону ул. Лесная. Идете по ул. Новослободская из центра по направлению к ул. Лесная. Переходите улицы: Лесная, Горлов туп., Порядковый пер. Доходите до пересечения ул. Новослободская с Угловой пер. Переходите переулок, перед вами здание, на фасаде вывеска "Зубы за 1 день". Вы на месте!

г. Москва, ул. Академика Королева, д. 10
От метро доберётесь за 15 минут. До трамвая 4 минуты, 5 минут на трамвае и 3 минуты до клиники. 1-ый вагон из центра. Выходите из метро, доходите до остановки трамвая и 4 остановки на любом трамвае, до Останкино. Выходите и возвращаетесь вдоль парка до дороги, переходите и налево 80м и увидите на фасаде вывеску "Центр Хирургической Стоматологии". Вы на месте!

г. Москва, От монорельса ст. ул. Академика Королева
Выходите из станции следуете вдоль ул. Академика Королева (по левую руку), проходите магазин "Мегасфера" до пересечения с дорогой. Поворачиваете направо и мимо лесопарка идете до дома №10. На фасаде вывеска "Центр Хирургической Стоматологии". Вы на месте!

Стоматологическая клиника "Миродент" - г. Одинцово, ул. Молодежная дом 48.
От ст. Одинцово автобусы №1, 36 или маршрутное такси № 102, 11, 77 - 2 остановки до остановки "Башня". От м. Парк Победы: автобус №339 до остановки "Башня". Клиника расположена на 2 этаже бизнес-центра.

20.04.2018

Информационные технологии прочно укрепляются во всех сферах современной жизни, не могли они не найти своего применения и в области стоматологии. Появляются даже термины «стоматологическая информатика», «компьютерная стоматология» и другие.

Цифровые технологии могут быть использованы на всех этапах стоматологического лечения – от заполнения и ведения форм медицинской документации до моделирования клинических ситуаций и предлагаемого плана лечения и так далее.

Автоматизированное проектирование и изготовление зубных протезов.

Теоретические основы данной технологии появлялись еще в начале 70-х гг XX века. Для обозначения систем автоматизированного проектирования в мире принято использовать обозначение CAD (Computer-Aided Design), а для систем автоматизации производства – CAM (Computer-Aided Manufacturing).

Технология развивается по двум направлениям. Первое – это индивидуальные CAD/CAM системы, которые позволяют работать в рамках одного медицинского учреждения, иногда даже в присутствии пациента прямо в кабинете стоматолога. Основное преимущество индивидуальных систем – оперативность изготовления, однако для полноценной работы все равно необходим весь комплекс оборудования, который стоит немало.

Второй вариант – централизованные CAD/CAM модули, которые предполагают наличие производственного центра, изготавливающего большой ассортимент конструкций для различных рабочих станций. Такой вариант позволяет каждому стоматологу не приобретать изготавливающий модуль. Однако его недостатком является то, что весь комплекс мероприятий не может быть проведен за одно посещение, а также доставка готовой конструкции усложняется и становится дороже. Ведь производственный центр может быть расположен в другом городе или даже стране.

Основной принцип работы всех современных CAD/CAM систем является неизменным с 1980-х годов и включает в себя несколько этапов:

1) сбор данных о рельефе поверхности протезного ложа с помощью специального устройства с дальнейшей оцифровкой полученной информации и приведением ее в приемлемый для компьютерной обработки вид;

2) создание виртуальной модели будущей конструкции с помощью компьютера и с учетом пожеланий дантиста;

3) изготовление самого протеза на основе данных, полученных с помощью устройства.

Различия имеются как раз в технологиях осуществления всех этих этапов, но сами они остаются неизменными.

Этап сбора данных

Основные различия систем можно обнаружить именно на этапе сбора данных. Считывание информации и перевод ее в цифровой формат может производиться с помощью механических и оптических цифровых преобразователей. Оптический слепок является трехмерным – каждая точка поверхности имеет четкие координаты в трех плоскостях. Устройство, которое создает такие слепки – это источник света и фотодатчик, который преобразует свет, отраженный от объекта, в поток электрических импульсов.

Механические системы сканирования данных считывают информацию контактным зондом, который передвигается по поверхности объекта согласно заданной траектории.

Этап компьютерного моделирования конструкции

На сегодняшний день изготовление предметов без предварительного точного описания невозможно. Данный этап создания протезов ранее был самым трудоемким и требовал от врача серьезных навыков в области геометрии и черчения. Необходимо было вручную вводить координаты всех точек. Все производители стоматологических CAD/CAM систем стремились упростить и максимально визуализировать данный процесс. Поэтому современные системы приступают к построению изображения на экране монитора, как только получают со сканера оцифрованную информацию. А затем специальные программы предлагают врачу возможные варианты реставрации зуба, из которых можно выбрать наиболее приемлемый. Степень вмешательства человека в работу системы CAD/CAM может варьироваться – от минимальных пользовательских настроек до существенных поправок в конструкции.

Непосредственное изготовление реставрации

Когда модель будущей реставрации готова, программное обеспечение преобразовывает виртуальную модель в набор команд, которые передаются на модуль CAM. Производственный модуль изготавливает спроектированную реставрацию. Самые первые системы изготавливали протезы путем вырезания из готового блока, используя алмазные или твердосплавные боры и диски. Излишки материала удалялись. При таком способе можно создать законченную форму сложной конфигурации, но это достаточно сложно, и значительная часть материала расходуется впустую. Поэтому возникли «добавляющие» методы производства зубных реставраций, которые также начали находить применение в системах CAD/CAM, при которых сложные конструкции можно изготовить без потерь материала.

Применение CAD/CAM систем

CAD/CAM системы не только помогают изготавливать зубные протезы. Их можно также применять в хирургической практике для изготовления хирургических шаблонов, которые облегчают правильное расположение зубных имплантов во время операций.

Существуют также автоматизированные системы, которые используются для обучения студентов-стоматологов и зубных техников. Их называют стоматологические симуляторы, они ускоряют приобретение навыков по восстановлению и препарированию зубов.

IT-технологии применяются на всех этапах оказания стоматологической помощи, поэтому своевременная подготовка специалистов, которые владеют такими технологиями, является важным условием их внедрения в стоматологию.

КЛКТ и протокол сканирования

Заключение

Усовершенствования в цифровой стоматологии напрямую зависят от прогресса технологий в компьютерной сфере, даже если они связаны с разработкой какого-то особого транзистора или микрочипа.

Цифровая революция, которая продолжает набирать обороты, началась еще в далеком 1947 году, когда инженеры Walter Brattain и William Shockley компании Bell Laboratory John Bardeen, изобрели первый в мире транзистор, за что впоследствии получили нобелевскую премию. Транзисторы тех времён, кроме того, что были довольно медленными, были еще и чрезмерно большими, по этой причине сложно было включить такую конструкцию в состав какой-то интегральной схемы, не говоря уже о микрочипе. В отличие от своих архисородичей, размер современных транзисторов может не превышать размера нескольких атомов (толщиной в 1 атом и шириной в 10), при этом подобные элементы работают очень быстро на частоте нескольких гигагерц, и могут компактно помещаться в структуре какой-то небольшой платы или компьютерной схемы. Например, Core-процессор (из серии i-series), выпущенный в 2010 году, содержит около 1,17 млрд. транзисторов (!), хотя в средине 70-х аналогичные процессоры могли содержать не более 2300 таких структурных элементов. Но это не предел. Согласно закону Мура, каждые 1-2 года на свет появляется новый микрочип, который по мощности вдвое превышает показатели своего предшественника. Поэтому неудивительно, что в настоящее время в стоматологии наблюдается своеобразный бум, а сканирующие, анализирующие и производственные возможности отрасли продолжают стремительно развиваться. Цифровой рентгенографией уже никого не удивишь, ведь все чаще врач пользуется полностью виртуальными протоколами диагностики и планирования лечения, которые помогают добиться желаемых результатов.

Одним из нововведений, которое уже буквально стало обыденной процедурой, является получение и анализ цифровых оттисков. Впервые подобную процедуру пробовали провести еще в 1973, когда аспирант Francois Duret в университете Клода Бернара (Лион, Франция), предложил получить оттиски с помощью лазера, чтобы в дальнейшем использовать их в ходе комплексной диагностики, планирования лечения, изготовления и припасовки будущих реставраций.

Почти через десять лет в 1983 году Werner Mörmann и Marco Brandestini удалось изобрести первый интраоральной сканер для терапевтической стоматологии, который обеспечивал точность оттисков на уровне 50-100 микрон. Принцип работы сканера базировался на возможностях триангуляции для получения мгновенных трехмерных (3D) изображений зубов, по которым можно было бы произвести фрезеровку будущих терапевтических конструкций. Последние в форме вкладок типа inlay получали при помощи CEREC (CERamic REConstruction или Chairside Economical Restoration of Esthetic Ceramics), но постоянный прогресс технологий в дальнейшем определил возможности для изготовления полноценных одиночных реставраций и даже целых ортопедических протезов. Усовершенствовался и сам CEREC. Так, обычный фрезерный станок модернизировался до системы CEREC OmniCam (Sirona Dental), которая обеспечивает получение наиболее прецизионных конструкций. Повышенное внимание именно к данной системе обусловлено ролью CEREC как пионера подобных аппаратов на рынке, который занимал лидирующую позицию на протяжении нескольких десятков лет, пока остальные аналоги становились на ноги и совершенствовались до уровня уже популярной установки. В настоящее время существует несколько довольно точных и мощных систем для получения внутриротовых оптических оттисков и изготовления CAD / CAM реставраций, но все они используют один и тот же принцип триангуляции для формирования изображения. Наиболее известны из них TRIOS (3Shape), iTero Element (Align Technology), True Definition Scanner 3M (3M ESPE).

Преимущества современных цифровых систем

Для всех современных цифровых систем получения оттисков характерны высокая точность реплик структур зубочелюстного аппарата, и, конечно же, полная неинвазивность манипуляции. В отличие от обычных оттисков, полученные изображения легко могут быть адаптированы ко всем условиям в процессе планирования и лечения, а техника их получения является настолько простой, что ей можно обучиться за несколько приемов. Таким образом, указанные оттиски являются не только более эффективными, но и более удобными для самих пациентов, а также повышают рентабельность стоматологических процедур в целом.

Большим преимуществом является также то, что благодаря цифровым оттискам врач имеет возможность получить не негативное изображение протезного ложа, а реальную копию зубов в формате 3D, которую легко можно оценить на наличие дефектов съемки и точности отдельных границ.

Также такие оттиски, это лишь объем цифровой информации, который в прямом значении экономит физическое пространство как в кабинете врача-стоматолога, так и у зубного техника в лаборатории. Исследования, проведенные для сравнения обычных и цифровых оттисков, доказали лучшую точность последних, при этом их отличие от обычных состоит в том, что их не надо дезинфицировать, а также нет надобности учитывать время получения оттиска для того, чтобы минимизировать эффекты усадки и изменения первичного размера оттискного материала.

Основным преимуществом цифровых оттисков является также то, что они легко могут быть включены в процесс комплексного планирования и лечения с возможностью прогнозирования будущих результатов стоматологической реабилитации. Прямые копии зубов и смежных анатомических структур визуализируются в прямой проекции сразу же после проведения процедуры сканирования, а высокое разрешение полученных изображений помогает оценить состояние существующих реставраций, дефектов, размер и форму участков адентии, тип окклюзионных контактов, а также полноценность бугорково-фиссурного смыкания.

Новые цифровые системы, как например, TRIOS, CEREC Omnicam, обеспечивают даже имитацию цвета структур ротовой полости на полученных репликах, помогая, таким образом, более естественно воспринимать рельеф, форму и цвет зубов и десен. Кроме того, такие возможности помогают врачу более дифференцировано и основательно подойти к вопросу выбора реставрационного материала (металла, керамики, композита), а также учесть наличие кровоточащих и воспаленных участков, областей с накоплением зубного налета и камня, учесть цветовые переходы между зубами, что крайне важно для высокоэстетических реставраций. Оптические оттиски также являются эффективным инструментом для обсуждения исходной клинической ситуации и возможных вариантов лечения с самим пациентом. После получения трехмерного изображения пациенту можно доступно объяснить проблемы с дефектными реставрациями, влияние факторов стирания, суперокклюзии или ангуляции зубов на будущий результат лечения, не дожидаясь при этом получения гипсовых моделей (фото 1).

Фото 1. Окклюзионный вид оптического оттиска верхней челюсти: изображение позволяет детально изучить присущие композитные и амальгамные реставрации, перелом язычного бугорка второго премоляра верхней челюсти слева, металло-керамическую коронку в области первого моляра верхней челюсти справа, и протез с опорой на имплантаты во фронтальном участке.

Все это стимулирует пациента активно включаться в процесс лечения и вести активный диалог с врачом, понимая все возможные риски и изменения собственного стоматологического статуса. Цифровые файлы оптических оттисков сохраняются в формате файлов тесселяции поверхностей (surface tessellation files - STL), и при необходимости из них можно произвести физические модели методом субстратных или аддитивных технологий.

Подготовка к получения оптических оттисков

Как и обычные оттиски, их цифровые аналоги также чувствительны к наличию крови или слюны в области тканей протезного ложа, поэтому поверхность зубов должна быть адекватно очищена и высушена перед сканированием. Следует также учесть эффект отражения поверхностей, риск возникновения которого может быть спровоцирован специфическими условиями освещения рабочего поля. Использование световых палочек помогает добиться адекватного уровня освещенности в области жевательных зубов, но при этом доступ фотоэлемента к этому участку все же остается затруднительным, а раздражение неба может спровоцировать рвотный рефлекс.

Тем не менее, цифровые оттиски – это лишь часть комплексного обследования пациента, которое, кроме всего прочего, должно также включать сбор общего анамнеза и анамнеза болезни, результаты клинического вне- и внутриротового обследования, а также четкое понимание жалоб пациента и его персональных ожиданий относительно будущих результатов вмешательства. Именно анализируя все вышеперечисленные данные, можно составить комплексный план лечения, ориентированный на конкретного пациента и особенности его клинической ситуации. Последние технологические возможности помогают стоматологу самостоятельно проводить имитацию будущих реставраций в области дефектных участков, согласовывая дизайн, контуры, положение, размеры, величину проксимальных контактов и профиль визуализации с пациентом, учитывая индивидуальные особенности окклюзии, и, таким образом, обеспечивая получения наиболее адаптированных и ожидаемых временных конструкций.

Тем не менее, главное ограничение существующих стоматологических цифровых технологий состоит в том, что с их помощью довольно сложно полностью учесть параметры эксцентричных движений челюсти и значение основных окклюзионных детерминант по будущему дизайну реставрации. В связи с тем, что регистрация точного соотношения верхней челюсти к плоскости дефектного участка является весьма затруднительным заданием, так же трудно установить объективный наклон окклюзионной плоскости относительно группы фронтальных зубов в момент их физиологического смыкания.

Такими же трудными задачами является анализ суставного пути, размаха трансверсальных движений и т.д., то есть использование цифровых оттисков – это своего рода тоже вызов для построения протетических конструкций с учетом всех физиологических или измененных параметров окклюзии. Получение точных оттисков с мягких тканей является также весьма проблематичным, особенно на участках полностью беззубых резидуальных гребней. Но как бы там ни было, возможность трехмерной визуализации, а также исключение необходимости отливки гипсовых моделей и формирования восковых шаблонов, значительно ускоряет и адаптирует процесс лечения, помогая достичь наиболее пациент-ориентированных результатов стоматологической реабилитации.

Протокол цифрового планирования продемонстрирован на фото 2-7. Пациент обратился за помощью с адентией верхнего правого центрального резца (фото 2).

Фото 2. Пациент обратился за помощью по поводу адентии латерального резца. В ходе лечения планировалось изготовить конструкцию с опорой на центральный резец и клык.

В ходе анализа индивидуальных пожеланий пациента, результатов комплексного обследования и прогноза будущего лечения было принято решение использовать несъемный литий-дисиликатный протез в качестве замещающей конструкции. Виртуальный макет будущей реставрации помог определить нужную длину, ширину и профиль контактных поверхностей для достижения максимально возможной мимикрии натуральных тканей (фото 3).

Фото 3. Цифровой mock-up протеза, замещающего отсутствующий зуб.

После этого провели препарирование опорных зубов (фото 4), а затем методом сканирования получили виртуальные оттиски отпрепарированных единиц и зубов-антагонистов, которые в дальнейшем анализировали в цифровом артикуляторе (фото 5).

Фото 4. Окклюзионный вид оптического оттиска отпрепарированных зубов с ретракционными нитями.

Фото 5. Виртуальная артикуляция оптических оттисков верхней и нижней челюстей.

Данные оптического оттиска были успешно использованы также для детального анализа ширины финишной линии области препарирования, путей введения конструкции, уровня преднамеренной редукции тканей в области осевых стенок и окклюзионной поверхности, а также для верификации поднутрений, которые были промаркированы красным цветом (фото 6).

Фото 6. Анализ оптического оттиска на наличие поднутрений. Поднутрения обозначены красным цветом с губной стороны центрального резца и с мезиальной стороны клыка.

Преимущество цифровых оттисков также состоит в том, что ошибки препарирования можно исправить в тот же визит, базируясь на информации, полученной во время сканирования, а после этого провести повторную манипуляцию уже на откорректированном участке отпрепарированных зубов. После этого цифровые файлы отправляют в техническую лабораторию для производства будущей реставрации с помощью фрезерных аппаратов. Пример окончательной конструкции представлен на фото 7.

Фото 7. Реставрация, полученная с оптического оттиска, примеряется на модели.

КЛКТ и протокол сканирования

Использование цифровых возможностей на этапах диагностики и планирования лечения не является каким-нибудь новшеством, а скорее рассматривается как уже достаточно аргументированный подход к реабилитации стоматологических пациентов. В течение многих десятилетий стоматологи использовали специализированное программное обеспечение для визуализации трехмерных результатов компьютерной томографии (КТ): в ходе анализа роста анатомических структур челюстно-лицевой области; патологии суставов; архитектуры кости; размеров отдельных участков зубов и челюстей; позиции жизненно-важных органов таких как кровеносные сосуды и нервы, а также границ гайморовых пазух и положения импактных зубов; диагностики опухолей и новообразований. Но, наверное, наиболее влиятельное значение КТ-диагностика имеет в ходе подготовки к дентальной имплантации и планирования челюстно-лицевой реконструктивной хирургии. Технологический прогресс набрал новых оборотов с разработкой конусно-лучевой компьютерной томографии (КЛКТ), которая по сравнению с обычной КТ характеризируется пониженным уровнем лучевой нагрузки и меньшей стоимостью аппарата. Действительно, суммарная радиация при КЛКТ-сканировании в среднем на 20% меньше, чем при спиральной КТ, и примерно равна таковой при выполнении обычной рентгенографии методом периапикальной съемки.

Результаты КТ и КЛКТ диагностики сохраняются в цифровом виде в стандартизированном формате файлов DICOM (digital imaging and communication in medicine). В сочетании с радиографическим шаблоном, изготовленным из диагностической восковой репродукции, КЛКТ данные могут быть успешно использованы для планирования позиции и ангуляции имплантатов с учетом фиксации будущей протетической конструкции, исходя из имеющихся условий и объемов костного гребня (фото 8 – фото 11). В настоящее время существуют два различных протокола имплементации рентгенографических шаблонов в структуру DICOM-данных для планирования будущих хирургических манипуляций. Согласно первому из них, именуемому протоколом двойного сканирования, процедура съемки проводится отдельно для хирургического шаблона и отдельно для пациента, при условии, что хирургический шаблон установлен в ротовой полости. Фидуциальные маркеры в структуре самого шаблона помогают в будущем довольно точно совмещать два полученных изображения. При этом уровень погрешностей сканирования практически сводится к минимуму, а изготовление шаблонов можно производить с помощью разного адаптированного программного обеспечения (фото 12).

Фото 8. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 9. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 10. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 11. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 12. Пример хирургического шаблона, изготовленного по цифровому дизайну двойного сканирования.

Второй протокол требует проведения лишь одной процедуры сканирования пациента вместе с установленным в ротовой полости хирургическим шаблоном. Полученные данные импортируются в программу планирования имплантации без необходимости проведения дополнительной обработки изображений. Как и в случае с протоколом двойного сканирования, врач имеет возможность аргументировано спланировать позицию и ангуляцию имплантатов, базируясь на пространственном расположении хирургического шаблона, полученного в результате предварительной диагностики. Трехмерные рентгенографические изображения, полученные с использованием протокола однократного сканирования, могут быть объединены с цифровыми шаблонами будущих реставраций, которые выполняют, базируясь на внутриротовых оптических оттисках (или результатах сканирования моделей), используя при этом в качестве маркеров существующие естественные зубы. При этом графически для кости, зубов, десен и имплантатов могут быть использованы разные цифровые маски (фото 13 и фото 14), а использование зубов в качестве фидуциальных маркеров значительно повышает точность планирования позиции будущих имплантатов.

Фото 13. Оптический оттиск и цифровая репродукция были комбинированы с результатами КЛКТ-сканирования для позиционирования имплантатов в ходе комплексного лечения. У данного пациента необходимо проведение процедуры синус-лифтинга для адекватной установки имплантатов (синим обозначены контуры зубов, полученные из восковой репродукции/оптического оттиска, красным – контуры мягких тканей).

Фото 14. Оптический оттиск и цифровая репродукция были комбинированы с результатами КЛКТ-сканирования для позиционирования имплантатов в ходе комплексного лечения. У данного пациента необходимо проведение процедуры синус-лифтинга для адекватной установки имплантатов (синим обозначены контуры зубов полученные из восковой репродукции/оптического оттиска, красным – контуры мягких тканей).

Аналогичные маркерные точки в структуре хирургического шаблона, к сожалению, не могут обеспечить аналогично высокого уровня прецизионности. Независимо от используемого протокола сканирования, предоставляемые возможности цифровой 3D визуализации, оптического сканирования и программного обеспечения являются уникальными инструментами планирования будущего ятрогенного вмешательства в руках умелого врача-стоматолога. Так, учитывая позицию и контур мягких тканей, размеры и качество костного резидуального гребня, как и расположение сосудов и нервов, врач может обеспечить максимально безопасный алгоритм имплантации, прогнозируя при этом не только функциональные, но и эстетические результаты реабилитации. Хирургический шаблон независимо от протокола получения сканируемого изображения обеспечивает точность позиционирования имплантата, исключая возможные операционные погрешности, которые могут возникнуть в ходе хирургического вмешательства. Виртуальное планирование дентальной реабилитации помогает врачу добиться наиболее безопасных, и в то же время пациент-ориентируемых результатов лечения эстетических и функциональных дефектов.

Заключение

Внутриротовые оптические сканеры продолжают постоянно модифицироваться, становясь все более быстрыми, точными и миниатюрными аппаратами, которые так необходимы в стоматологической практике. Учитывая прогрессирующие развитие технологий трехмерной визуализации и адаптированного программного обеспечение для обработки изображений, можно с твердостью резюмировать, что нынешние стоматологи живут в золотой век цифровых технологий. Подобные новшества помогают добиться более точных и прецизионных результатов диагностики, планирования и проведения ятрогенных вмешательства, вместе с тем повышая комфорт в ходе стоматологического лечения. Таким образом, крайне важно, чтобы новые цифровые технологии своевременно появлялись и продолжали развиваться в стенах стоматологических кабинетов и клиник.

Ключевые слова

CAD/CAM СИСТЕМЫ / СТОМАТОЛОГИЯ / ЗУБНЫЕ ПРОТЕЗЫ / CAD / CAM SYSTEMS / DENTISTRY / DENTAL RESTORATIONS

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы - Цаликова Н. А.

Современные системы компьютерного моделирования и изготовления протезов находят широкое применение в стоматологии . Это обусловлено возможностью сокращения этапов протезирования, использования новых эстетичных и прочных материалов, высоким уровнем их обработки. Все системы компьютерного моделирования и изготовления протезов состоят из трех основных функциональных компонентов: модулей для сканирования, проектирования, автоматизированного изготовления. Основными этапами изготовления стоматологических реставраций при помощи компьютерных технологий являются: получение цифрового слепка, обработка и преобразование полученной цифровой информации, реконструкция поверхности зубов на мониторе, конструирование виртуальной модели будущей реставрации, автоматизированное изготовление реставрации. Все существующие системы компьютерного моделирования и изготовления протезов дифференцируются, главным образом, по типу трехмерного сбора данных о геометрии полости рта, по спектру изготавливаемых конструкций зубных протезов и используемых конструкционных материалов, а также по бизнес-модели применения в клинике. Значительную роль в популяризации технологии отводят переходу от двухмерного изображения к изометрии, что позволяет визуализировать и контролировать в полной мере процесс конструирования реставрации на экране монитора, а также появлению новых конструкционных материалов, совмещающих в себе эстетику керамики и прочность металла.

Похожие темы научных работ по компьютерным и информационным наукам, автор научной работы - Цаликова Н. А.

  • СAD/Cam системы в стоматологии: современное состояние и перспективы развития

    2016 / Наумович Сергей Семенович, Разоренов Александр Николаевич
  • Современные цифровые технологии изготовления зубных протезов

    2011 / Пивоваров В. И., Бондарь Е. С., Рыжова И. П.
  • Применение cad/cam-технологий в зуботехнической лаборатории

    2016 / Искендеров Рамиль Мазахирович
  • Методики применения CAD-технологий в стоматологической диагностике

    2015 / Иванова Е.А., Трифонов А.А.
  • Возможности применения комбинации цифровых и традиционных технологий в ортопедической стоматологии

    2018 / Алтынбеков К.Д., Антонова Л.П., Нысанова Б.Ж., Алтынбекова А.К., Кусаинов К.Т.
  • Оценка качества уступа при одонтопрепарировании под металлокерамические коронки методом компьютерной обработки оптического оттиска

    2016 / Пархоменко Алексей Николаевич, Шемонаев Виктор Иванович, Моторкина Татьяна Владимировна, Грачев Денис Викторович, Храпов Сергей Сергеевич, Белоусов Антон Владимирович, Можняков Максим Александрович
  • Современные компьютерные технологии в ортопедической стоматологии

    2016 / Ретинский Борис Владимирович, Кудряшов Андрей Евгеньевич
  • Использование сканирования в ортопедической стоматологии - обзор литературы

    2017 / Мирзоева Мария Степановна
  • Преимущества временных несъемных фрезерованных и полимеризованных пластмассовых протезов на имплантатах

    2013 / Олесова В. Н., Довбнев В. А., Евстратов О. В., Зверяев А. Г., Зуев М. Д., Лесняк А. В., Хубаев С. С., Гарус Я. Н.
  • Применение цифровых технологий для изготовления диоксидциркониевых зубных протезов с учетом индивидуальных параметров зубочелюстной системы пациента

    2015 / Рогожников А. Г., Гилева О. С., Ханов А. М., Шулятникова Оксана Александровна, Рогожников Г. И., Пьянкова Е. С.

MODERN DIGITAL TECHNOLOGIES IN DENTISTRY

Modem dental CAD / CAM systems are now widely used in dentistry . This is due to the possibility of reducing prosthetic procedure time, the use of new aesthetic and durable materials, a high level of processing. All CAD / CAM systems consist of three main functional components: the scanning module, computer-aided design, computer-aided manufacturing. The main stages of the production of dental restorations using computer technology are: digital impression taking, processing and conversion of the resulting digital information, the reconstruction of the teeth on the monitor, design of virtual model of the final restoration, automated fabrication of the restoration.All existing CAD / CAM systems differ mainly by the type of three-dimensional data acquisition of the geometry of the mouth cavity, the spectrum of produced dentures and used construction materials t and on the business model. The success of dental CAD/CAM is due to the isometric reconstruction of the model and tooth restoration and modern strong and esthetic dental materials.

Текст научной работы на тему «Современные компьютерные технологии в стоматологии»

УДК 616.314-76

СОВРЕМЕННЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В СТОМАТОЛОГИИ

Н.А. ЦАЛИКОВА

ГБОУВПО Московский государственный медико-стоматологический университет им. А.И.Евдокимова, 127473, г. Москва, ул. Делегатская, д.20, стр.1, тел.: 8-905-704-95-40, e-mail: [email protected]

Аннотация: современные системы компьютерного моделирования и изготовления протезов находят широкое применение в стоматологии. Это обусловлено возможностью сокращения этапов протезирования, использования новых эстетичных и прочных материалов, высоким уровнем их обработки. Все системы компьютерного моделирования и изготовления протезов состоят из трех основных функциональных компонентов: модулей для сканирования, проектирования, автоматизированного изготовления. Основными этапами изготовления стоматологических реставраций при помощи компьютерных технологий являются: получение цифрового слепка, обработка и преобразование полученной цифровой информации, реконструкция поверхности зубов на мониторе, конструирование виртуальной модели будущей реставрации, автоматизированное изготовление реставрации. Все существующие системы компьютерного моделирования и изготовления протезов дифференцируются, главным образом, по типу трехмерного сбора данных о геометрии полости рта, по спектру изготавливаемых конструкций зубных протезов и используемых конструкционных материалов, а также по бизнес-модели применения в клинике. Значительную роль в популяризации технологии отводят переходу от двухмерного изображения к изометрии, что позволяет визуализировать и контролировать в полной мере процесс конструирования реставрации на экране монитора, а также появлению новых конструкционных материалов, совмещающих в себе эстетику керамики и прочность металла.

Ключевые слова: CAD/CAM системы, стоматология, зубные протезы.

MODERN DIGITAL TECHNOLOGIES IN DENTISTRY.

Moscow State Medical and Dental University After A.I. Evdokimova

Abstract: modern dental CAD / CAM systems are now widely used in dentistry. This is due to the possibility of reducing prosthetic procedure time, the use of new aesthetic and durable materials, a high level of processing. All CAD / CAM systems consist of three main functional components: the scanning module, computer-aided design, computer-aided manufacturing. The main stages of the production of dental restorations using computer technology are: digital impression taking, processing and conversion of the resulting digital information, the reconstruction of the teeth on the monitor, design of virtual model of the final restoration, automated fabrication of the restora-tion.All existing CAD / CAM systems differ mainly by the type of three-dimensional data acquisition of the geometry of the mouth cavity, the spectrum of produced dentures and used construction materials t and on the business model. The success of dental CAD/CAM is due to the isometric reconstruction of the model and tooth restoration and modern strong and esthetic dental materials.

Key words: CAD / CAM systems, dentistry, dental restorations.

Цифровые технологии прочно вошли во все сферы жизнедеятельности человека, в том числе - в медицину . Возможности их использования в стоматологии на всех этапах лечения пациентов включают ведение медицинской документации, диагностику (радиовизиографы, компьютерные томографы, виртуальные артикуляторы, цифровая фотоаппаратура), моделирование и имитацию клинических ситуаций, лечение. Разрабатываются способы получения и ориентации компьютерных трехмерных моделей зубов и зубных рядов, измерения высоты фиссур, бугров, формы их скатов, способы контроля одонтопрепарирования .

Одним из символов инновационного развития стоматологии последних лет является технология компьютерного проектирования и изготовления протезов, для обозначения которой существует общепринятая аббревиатура - CAD/CAM. Разработка систем автоматизированного производства в промышленности началась в 60-х годах 20-го столетия . Тогда же стали формироваться основные понятия и классификация систем и подсистем по их целевому признаку. Соответственно стандартам ГОСТ 34.003-90 и ГОСТ 23501.101-87 система автоматизированного проектирования, САПР - автоматизированная система, реализующая информационную технологию выполнения функций проектирования. Обозначаются также основная цель и задачи создания САПР - повышение эффективности труда, включая: сокращение трудоемкости проектирования и планирования; сокращение сроков проектирования; сокращение себестоимости проектирования и изготовления, уменьшение затрат на эксплуатацию; повышение качества и технико-экономического уровня результатов проектирования; сокращение затрат на моделирование и испытания. CAD/CAM-технологии - частный пример САПР.

СAD (англ. computer-aided design/drafting) - средства автоматизированного проектирования, СAM (англ. computer-aided manufacturing) - средства технологической подготовки производства изделий . Адекватным аналогом английской аббревиатуры CAD/CAM применительно к стоматологии является: системы компьютерного проектирования и автоматизированного изготовления реставраций.

Поскольку САПР уже активно использовались в производстве в начале SG-х годов, считалось, что CAD/CAM системы стоматологического назначения будут представлять собой упрощенный вариант промышленных. Однако в действительности производство стоматологических CAD/CAM систем не являлось ни простым, ни легким по ряду причин. Общая стоимость, время работы и качество произведенного конечного продукта CAD/CAM систем должны быть на уровне по сравнению с традиционными методиками, а в идеале - превосходить их по всем параметрам, чтобы заменить их в повседневной лабораторной и клинической практике. Морфология опорных, а также рядом стоящих зубов и зубов-антагонистов должна быть точно оцифрована для создания качественных реставраций. Однако было достаточно трудно распознать тонкие края отпрепарированных зубов с использованием сканеров, доступных на тот момент. Таким образом, развитие точных и компактных сканеров и связанного с ними программного обеспечения было необходимо для выполнения этой сложной и деликатной задачи. Кроме того, поскольку реставрация должна быть не только адаптирована по линии препарирования, но и гармонировать с естественными зубами, а также восстанавливать окклюзионный контакт, необходимо сложное программное CAD обеспечение. Необходима точная, но деликатная механическая обработка хрупких керамических материалов с учетом сложных геометрических форм реставраций, что требует использования высококлассного CAM оборудования с программным обеспечением для контроля траектории и скорости подачи инструмента. Кроме того, размеры обрабатывающего блока должны быть ограничены для установки в стандартном стоматологическом кабинете или лаборатории . Наконец, в отличие от массового производства промышленных деталей, каждая реставрация индивидуальна и неповторима. Следовательно, удельное количество временных и интеллектуальных затрат несопоставимо больше. Однако, несмотря на вышеперечисленные сложности, CAD/CAM системы постепенно нашли признание в стоматологическом сообществе.

Возможности современных CAD/CAM систем - это результат длительной эволюции, которая еще не достигла своего пика. Начало развития стоматологических систем пришлось на конец VG-х годов 2G-ro столетия. Разработчиками ставились задачи:

Стандартизировать процесс конструирования реставраций, свести к минимуму субъективный человеческий фактор, дав четкое цифровое выражение параметрам моделировки;

Совершенствовать и унифицировать стоматологические конструкционные материалы путем использования стандартных заготовок;

Снизить временные и трудовые затраты на изготовление реставраций зубов.

Признанными родоначальниками считаются несколько систем-пионеров, которые внесли первый весомый вклад в развитие CAD/CAM технологий в стоматологии. В литературе встречаются сведения о разработчиках из США J.M.Young и B.R. Altschuler, которым принадлежали теоретические выкладки об использовании лазерной голографической оптики для отображения поверхности зубов Франсуа Дюре был первым практиком в области стоматологических CAD/CAM .С 1971 года он стал работать над проектом, способным изготавливать коронки с функциональной формой жевательной поверхности. Сканирование было основано на принципе лазерной голографической оптики. Коронки проектировались с учетом функциональных движений и фрезеровались при помощи станка с числовым программным управлением. На изготовление одной реставрации уходило около четырех часов. Первый прототип системы Duret был представлен на конференции Entretiens Garancieres во Франции в 19S3 году. Позже Sopha Duret стала системой Sopha Bioconcept ®. Система не нашла широко признания из-за сложности всех производимых операций и дороговизны, но оказала влияние на последующее развитие стоматологических CAD/CAM систем в мире .

В начале ^SG-х годов доктором W.Mormann совместно с инженером M. Brandestini, была разработана CEREC ® system (Университет г. Цюрих), первый производитель Siemens Dental Corp., Benshein (Германия), в последующем SIRONA (Германия). Для внутриротового оптического сканирования использовался структурированный свет. Система была ориентирована на изготовление керамических вкладок. Для фрезерования использовались алмазные диски. Несмотря на то, что окклюзионную поверхность врачу приходилось формировать вручную при помощи бора и наконечника, краевое прилегание керамических реставраций было удовлетворительным, и система нашла признание у стоматологов. Появление ее было поистине инновационным, поскольку она пропагандировала принцип chair side - изготовление керамических реставраций непосредственно у кресла пациента. Когда эта система была заявлена, быстро распространился термин CAD/CAM для стоматологии . В разработанной позже системе CEREC 2 получали уже двухмерный оптический слепок. Один из двух дисков, использовавшихся ранее во фрезерном блоке, был заменен на алмазную фрезу, что значительно улучшало качество изготавливаемых реставраций и позволило фрезеровать коронки. Однако двухмерное изображение объекта было недостаточно информативно, и для вычисления высоты бугорков и фиссур реставрации по-прежнему были необходимы сложные математические расчеты.

Появление изометрии в CEREC 3 стало прорывом в прикладной цифровой стоматологии. Разработанная упрощенная программа моделировки стала доступна самому широкому кругу пользователей. Благодаря использованию двух фрез различной формы и диаметра, фрезерование стало еще более точным и деликат-

ным, соответственно расширялся также и спектр конструкционных материалов. В настоящее время CEREC-технология является достойной альтернативой традиционным методам изготовления реставраций .

Из-за повышения требований к качеству ортопедического лечения появились новые эстетичные и одновременно прочные и безопасные стоматологические материалы, которые требовали особой обработки. Это явилось толчком к дальнейшему развитию систем автоматизированного проектирования и изготовления стоматологических реставраций [В начале 1980-х годов, никель-хромовый сплав был использован в качестве замены для сплавов золота в стоматологии из-за резкого роста цен на драгоценные металлы в тот период. С этим связывали появление проблемы непереносимости стоматологических материалов. Выход был найден в использовании титана. Однако активному использованию титана мешали сложности, связанные с его литьем. Доктор М. Андерссон поставил на поток изготовление титановых каркасов методом искро-эрозионной обработки. Это было первое применение CAD/CAM в стоматологии для обработки металла (Procera ® AllTitan). Шведская система Procera ® system, разработчиками которой являются M. Andersson, B. Bergman, и др., была представлена на мировом стоматологическом рынке в 1996 году и сразу завоевала популярность. В дальнейшем система Procera стала одним из мировых лидеров по изготовлению цельнокерамических конструкций. Procera стала также первой и самой крупной из работающих по принципу «аутсорсинга».

В дальнейшем мощным стимулом к развитию CAD/CAM систем стало широкое использование новых керамических материалов, отвечающих требованиям прочности и эстетики. Созданная изначально с целью отхода от технической лаборатории, технология CAD/CAM переросла в массовое лабораторное производство. Менялся масштаб поставленных задач, расширялся спектр материалов. Появившиеся крупные лабораторные системы, такие как Procera (Швеция), KAVO Everest (Германия), Lava (Германия), HintElls (Германия) заявили о возможности изготовления каркасов мостовидных протезов из оксидной керамики, протяженность которых росла из года в год. А некоторые из них стали предлагать также обработку металлов и вспомогательных материалов.

Значительную роль в популяризации технологии отводят также переходу от двухмерного изображения к изометрии, что позволяет визуализировать и контролировать в полной мере процесс конструирования реставрации на экране монитора. В настоящее время список и география CAD/CAM систем в стоматологии постоянно расширяются, как и возможности самих систем

Все существующие CAD/CAM системы дифференцируются, главным образом, по типу трехмерного сбора данных о геометрии полости рта, по спектру изготавливаемых конструкций зубных протезов и используемых конструкционных материалов, а также по бизнес-модели применения в клинике. Модули проектирования и автоматизированного производства (CAM) имеют похожие функции и в основном обеспечены устройствами для фрезерования материала, на которые посылаются четкие инструкции для изготовления протезов . Программное обеспечение связывает все модули и дает жизнь всей системе. Как и в случае изготовления несъемных протезов традиционными методами, первым этапом является планирование лечения и определение показаний к применению конструкции из того или иного конструкционного материала. Учитывая высочайшие прочностные характеристики современных каркасных оксидных материалов, приближенных по прочности к металлам, показания к изготовлению таких конструкций также максимально приближены к металлокерамике. Основные принципы подготовки зубов к изготовлению реставраций соответствуют классическим канонам препарирования твердых тканей и направлены на обеспечение оптимальной ретенции при наименьшей инвазивности и создание запаса пространства, необходимого для адекватной толщины конструкционного материала . Отличия в препарировании твердых тканей зубов при работе с CAD/CAM системами обусловлены особенностями конструкционных материалов, требующих четкого соблюдения требований к толщине, площади сечения и форме реставрации; процесса сканирования зуба, что требует тщательного препарирования с четким краем и соблюдением рекомендуемых углов дивергенции или конвергенции стенок, в зависимости от вида реставрации, отсутствия поднутрений, а также с учетом возможной глубины сканирования (как правило, около 1 см); этапа фрезерования реставрации с учетом возможностей доступного диаметра и длины рабочей части фрезы.

Все CAD/CAM системы состоят из трех основных функциональных компонентов: модулей для сканирования, проектирования, автоматизированного изготовления .

1. Модуль для сканирования - получения цифровых параметров интересующих нас объектов в полости рта: геометрии протезного поля и зубов-антагонистов. С этой целью используют различные варианты сканеров. Результат сканирования называют цифровым слепком (digital impression), а в случае использования оптического сканера - оптическим слепком.

2. CAD - модуль представляет собой программный пакет с набором функций трехмерной визуализации полученной информации и моделирования виртуальной реставрации соответственно протезному полю с учетом его анатомо-функциональных характеристик.

3. СAM - модуль для изготовления реставрации. Преимущественно это фрезерные модули для обработки стандартных промышленных заготовок материала в виде станков с числовым программным управлением - ЧПУ, английская аббревиатура - CNC (Computer Numeric Control), в которые загружается виртуальная NC-модель реставрации. Однако в настоящее время все шире внедряются новые аддитивные методы изготовления реставраций зубов, такие как системы быстрого прототипирования, селективного лазерного

спекания (SLS) и другие .

Соответственно вышеназванным модулям CAD/CAM систем, основными этапами изготовления стоматологических реставраций при помощи компьютерных технологий являются:

Получение цифрового слепка, который представляет собой регистрацию комплекса цифровых параметров интересующих нас объектов. В зависимости от объема и сложности реставрации, это могут быть полости, подготовленные под вкладки, культи от препарированных зубов, соседние зубы, зубы-антагонисты. С этой целью используются сканеры или дигитайзеры, применяющие контактные и бесконтактные методы измерения профиля поверхности;

Обработка и преобразование полученной цифровой информации, реконструкция поверхности зубов на мониторе, конструирование виртуальной модели будущей реставрации;

Автоматизированное изготовление реставрации.

Основные модули CAD/CAM систем соответствуют производимым этапам, хотя иногда они могут быть совмещены в один блок.

Отличаются этапы изготовления реставраций в так называемых CAM системах, где отсутствует программа моделировки виртуальной реставрации. Эта функция традиционно выполняется техником в зуботех-нической лаборатории из воска, пластмасс или других вспомогательных материалов. В дальнейшем реплика реставрации сканируется, либо сразу копируется, воплощаясь в конструкционном материале.

Литература

1. Одонтопрепарирование при лечении винирами и керамическими коронками / С.Д. Арутюнов [и др.].- М.: Молодая гвардия.- 2008.- 135 с.

2. ГОСТ 34.003-90 Информационная технология./ Комплекс стандартов на автоматизированные системы. Термины и определения

3. ГОСТ 23501.101-87 «Системы автоматизированного проектирования. Основные положения», РД 250-680-88 /Методические указания. Автоматизированные системы. Основные положения.

4. Ибрагимов, Т.И. Современные методы изучения окклюзионной поверхности зубов/ Т.И. Ибрагимов, Г.В. Большаков, А.В Габучян // Сборник трудов IX Всерос. науч.-практ. конф. «Образование, наука и практика в стоматологии» по единой тематике «Пути повышения качества стоматологической помощи».-М., 2012.- С. 94-96.

5. Ибрагимов, Т.И. Применение свойств виртуального артикулятора в клиническом планировании и контроле одонтопрепарирования / Т.И. Ибрагимов, Г.В. Большаков, А.В Габучян, В.А. Князь // Сборник трудов IX Всерос науч-практ. конф. «Образование, наука и практика в стоматологии» по единой тематике «Пути повышения качества стоматологической помощи».- М., 2012.- С. 96.

6. Малюх, В.Н. Введение в современные САПР / В.Н. Малюх //Курс лекций.- М.: ДМК Пресс, 2010.192 с.

7. Норенков, И.П.Основы автоматизированного проектирования / И.П. Норенков // Учеб. для вузов. 4-е изд., перераб. и доп.- М.: Изд-во МГТУ им. Н.Э. Баумана, 2009.- 430 с.

8. Полховский, Д.М. Применение компьютерных технологий в стоматологии / Д.М. Полховский // Современная стоматология.- 2008.- №1.- С. 24-27.

9. Ряховский, А.Н. Цифровая стоматология / А.Н Ряховский.- М.: ООО «Авантис».- 2010.- 282 с.

10. Miyazaki, T.D. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience / T.D. Miyazaki, Y.Hotta, J. Kunii. // Dental materials Journal.- 2009.- Vol. 28.- № 1.- 544-566.

11. Mormann, W.H. State of the Art of CAD/CAM Restorations. 20 years of CEREC / W.H. Mormann, J. Tinshert // CAD/CAM. Systems and Materials for the Dental Lab.- 2006.- P. 139-144.

12. Schunke,S. CAD/CAM: un paso adelante o atrás? La tecnología CAD/CAM cambia la evaluación de la calidad de la prostodoncia: un artículo actual y personal / S. Schunke // Quintessence técnica.- 2008.- Vol. 19.-№ 2, ed.esp.- P. 92-102.

Понравилась статья? Поделитесь с друзьями!