Скорость распространеия пульсовой волны (српв). Способ измерения скорости распространения пульсовой волны Пульсовая волна скорость длина уравнение пульсовой волны

Скорость распространения пульсовой волны

гемодинамический показатель: скорость перемещения волны давления, вызванной систолой сердца, по аорте и крупным артериям.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Скорость распространения пульсовой волны" в других словарях:

    Гемодинамический показатель: скорость перемещения волны давления, вызванной систолой сердца, по аорте и крупным артериям … Большой медицинский словарь

    Скорость распространения - пульсовой волны – скорость перемещения волны давления по аорте и крупным артериям, вызванная систолой сердца …

    ПУЛЬС - ПУЛЬС, pulsus^iaT. толчок), топчкообразные ритмические смещения стенок сосудов, вызванные движением крови, выбрасываемой сзрдцем История учения о П. начинается за 2 6 39 лет до нашей эры, когда китайский император Хоам Ту с придворным врагом Ли… … Большая медицинская энциклопедия

    Гемодинамика движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого). Зависит от сопротивления току крови … Википедия

    I Сфигмография (греч. sphygmos пульс, пульсация + graphō писать, изображать) метод исследования гемодинамики и диагностики некоторых форм патологии сердечно сосудистой системы, основанный на графической регистрации пульсовых колебаний стенки… … Медицинская энциклопедия

    - (от лат. pulsus удар, толчок) синхронное с сокращением сердца периодическое расширение кровеносных сосудов, видимое глазом и определяемое на ощупь. Ощупывание (пальпация) артерий позволяет установить частоту, ритмичность, напряжение и др …

    - (от греч. sphygmós пульс и...графия) бескровный метод исследования кровообращения человека и животных, основанный на графической регистрации Пульса колебаний стенок артерий при прохождении пульсовой волны. Для записи пульсовых кривых… … Большая советская энциклопедия

    Старость, старение. Старость закономерно наступающий период возрастного развития, заключительный этап онтогенеза. Старение неизбежный биологический разрушительный процесс, приводящий к постепенному снижению адаптационных возможностей организма;… … Медицинская энциклопедия

    - (J.G. Mönckeberg, нем. патологоанатом, 1877 1925; синоним кальцифицирующий склероз Менкеберга) макроангиопатия, развивающаяся при сахарном диабете и заключающаяся в поражении крупных артерий нижних конечностей. Патоморфологически представляет… … Медицинская энциклопедия

    Пульсовая волна - – волна деформации стенок аорты, артерий, возникающая при сердечном выбросе крови, распространяемая по артериальным сосудам, затухая в области артериол и капилляров; скорость распространения пульсовой волны 8 13 м/с, превышает среднюю линейную… … Словарь терминов по физиологии сельскохозяйственных животных

    Немецкие ученые, братья: 1) Эрнст Генрих (1795 1878), анатом и физиолог, иностранный член корреспондент Петербургской АН (1869). Один из основоположников экспериментальной психологии. Исследования физиологии органов чувств (слуха, зрения, кожных … Большой Энциклопедический словарь

Методы контроля кровенаполнения тканей

и измерения скорости пульсовой волны

Скорость распространения пульсовой волны в аорте может составлять 4-6 м/сек, в артериях мышечного типа 8/12 м в сек. Линейная скорость кровотока по артериям обычно не превышает 0,5 м/сек.

Плетизмография (от греч. plethysmos - наполнение, увеличение + graphō - писать, изображать) - метод исследования сосудистого тонуса и кровотока в сосудах мелкого калибра, основанный на графической регистрации пульсовых и более медленных колебаний объема какой-либо части тела, связанных с динамикой кровенаполнения сосудов.

Метод фотоплетизмографии основан на регистрации оптической плотности исследуемой ткани (органа).

Физические основы кровотока (гемодинамики ).

Объёмной скоростью кровотока (Q) называют объём жидкости (V), протекающий в единицу времени через поперечное сечение сосуда:

Q = V / t (1)

Линейная скорость кровотока определяется отношением пути, проходимого частицами крови, ко времени:

υ = l / t (2)

Объёмная и линейная скорости связаны соотношением:

Q = υ · S , (3)

где S – площадь поперечного сечения потока жидкости.

Для сплошного течения несжимаемой жидкости выполняется уравнение неразрывности: через любое сечение струи в единицу времени протекают одинаковые объёмы жидкости.

Q = υ · S = const (4)

В любом сечении сердечно - сосудистой системы объёмная скорость кровотока одинакова .

Площадь суммарного просвета капилляров в 700-800 раз больше поперечного сечения аорты. С учётом уравнения неразрывности (4) это значит, что линейная скорость кровотока в капиллярной сети в 700-800 раз меньше, чем в аорте, и составляет примерно 1 мм / с . В покое средняя скорость кровотока в аорте лежит в интервале от 0.5 м / с до 1 м / с , а при большой физической нагрузке может достигать 20 м / с .



Рис. 2. Соотношение между суммарным поперечным сечением сосудистой системы (S) на разных уровнях (сплошная линия) и линейной скоростью кровотока (V) в соответствующих сосудах (штриховая линия):

Сила вязкого трения по формуле Ньютона:

F тр = - η · S ·(d υ / dy ), (5)

где η- коэффициент вязкости (динамическая вязкость), S – площадь соприкосновения контактирующих слоёв. У цельной крови коэффициент вязкости, измеренный на вискозиметре, составляет около 5 мПа·с, что в 5 раз больше вязкости воды . При патологических состояниях вязкость крови колеблется от 1.7 мПа·с до 22.9 мПа·с.

Кровь вместе с другими жидкостями, вязкость которых зависит от градиента скорости, относится к неньютоновским жидкостям. Вязкость крови неодинакова в широких и узких сосудах, причём влияние диаметра кровеносного сосуда на вязкость начинает сказываться при просвете менее 1 мм.

Ламинарное и турбулентное (вихревое ) течение . Переход от одного вида течения к другому определяется безразмерной величиной, называемой числом Рейнольдса:

Re = ρ < υ > d / η = < υ > d / ν , (6)

где ρ – плотность жидкости, <υ> - средняя по сечению сосуда скорость жидкости, d – диаметр сосуда, ν=η/ρ – кинематическая вязкость.

Критическое значение числа Рейнольдса Re кр

Для однородных жидкостей Reкр = 2300, для крови Reкр = 970±80, но уже при Re >400 возникают локальные завихрения в разветвлениях артерий и в области их крутых изгибов.

Формула Пуазейля, для объёмной скорости кровотока:

Q = π r 4 Δ p /8 η l , (7)

где Q – объёмная скорость кровотока, r – радиус сосуда, Δp – разность давлений на концах сосуда, η – вязкость крови.

Видно, что при заданных внешних условиях (Δp) через сосуд протекает тем больше крови, чем меньше её вязкость и чем больше радиус сосуда.

Формуле Пуазейля можно придать и такой вид:

Q = Δ p / R г ., (8)

В этом случае формула Пуазейля обнаруживает сходство с законом Ома.

Rг = 8ηl/πr4 отображает сопротивление сосудистого русла кровотоку, включая все факторы, от которых оно зависит. Поэтому Rг называют гемодинамическим сопротивлением (или общим периферическим сопротивлением сосудов).

Гемодинамическое сопротивление 3-х сосудов, соединённых последовательно и параллельно, вычисляется по формулам:

R г = R г 1 + R г 2 + R г 3 , (10)

R г = (1/ R г 1 + 1/ R г 2 + 1/ R г 3 ) -1 (11)

Из анализа модели разветвлённой сосудистой трубки следует, что вклад крупных артерий в R г незначителен , хотя общая длина всех артерий большого диаметра сравнительно велика .


Возникновение и распространение пульсовой волны

по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.


Пульсовая волна распространяется от места своего возникновения до капилляров, где затухает. Скорость её распространения можно рассчитать по формуле:

υ п = (E b /2 ρ r ) 1/2 , (12)

где Е – модуль Юнга сосудистой стенки, b – её толщина, r – радиус сосуда, ρ – плотность тканей сосудистой стенки.

Скорость пульсовой волны можно принять в качестве количественного показателя упругих свойств артерий эластического типа – тех свойств, благодаря которым они выполняют свою основную функцию.

Скорость пульсовой волны в аорте составляет 4 - 6 м / с , а в лучевой артерии 8 – 12 м / с . При склеротических имениях артерий повышается их жёсткость, что проявляется в нарастании скорости пульсовой волны.

Сфигмография

(греч. sphygmos пульс, пульсация + graphō писать, изображать) - метод исследования гемодинамики и диагностики некоторых форм патологии сердечно-сосудистой системы, основанный на графической регистрации пульсовых колебаний стенки кровеносного сосуда.

Сфигмографию осуществляют с помощью специальных приставок к электрокардиографу или другому регистратору, позволяющих преобразовывать воспринимаемые приемником пульса механические колебания стенки сосуда (или сопутствующие им изменения электрической емкости либо оптических свойств исследуемого участка тела) в электрические сигналы, которые после предварительного усиления подаются на регистрирующее устройство. Записываемую кривую называют сфигмограммой (СГ). Существуют как контактные (накладываемые на кожу над пульсирующей артерией), так и бесконтактные, или дистанционные, приемники пульса. Последние обычно используют для регистрации венного пульса - флебосфигмографии. Запись пульсовых колебаний сегмента конечности с помощью накладываемых по ее периметру пневматической манжеты или тензометрического датчика называют объемной сфигмографией.

Сфигмография применяется как самостоятельный метод исследования или входит в состав других методик, например механокардиографии, поликардиографии. Как самостоятельный метод С. используют для оценки состояния артериальных стенок (по скорости распространения пульсовой волны, амплитуде и форме СГ), диагностики некоторых заболеваний, в частности клапанных пороков сердца, неинвазивного определения ударного объема сердца по методу Вецлера - Бегера. По диагностическому значению С. уступает более совершенным методам, например рентгенологическим или ультразвуковым методам исследования сердца и сосудов, но в ряде случаев дает ценную дополнительную информацию и в связи с простотой исполнения доступна для применения в условиях поликлиники.


Рис. 1. Сфигмограмма сонной артерии в норме: а - предсердная волна; b - анакрота; d - поздняя систолическая волна; е-f -g - инцизура; g - дикротическая волна, i - преданакротический зубец; be - период изгнания; ef - протодиастолический интервал.

Артериальная сфигмограмма отражает колебания стенки артерии, связанные с изменениями давления в сосуде на протяжении каждого сердечного цикла. Выделяют центральный пульс, отражающий колебания давления в аорте (СГ сонных и подключичных артерий), и периферический пульс (СГ бедренной, плечевой, лучевой и других артерий).

На нормальной СГ сонной артерии (рис. 1 ) после низкоамплитудных волн а (отражает систолу предсердий) и зубца i (возникает в связи с изометрическим напряжением сердца) наблюдается крутой подъем основной волны b - анакрота, обусловленная открытием аортального клапана и переходом крови из левого желудочка в аорту. Этот подъем сменяется в точке с нисходящей частью волны - катакротой, формирующейся в результате преобладания в данный период в сосуде оттока крови над притоком. В начале катакроты определяется поздняя систолическая волна d , за которой следует инцизура efg . За время ef (протодиастолический интервал) происходит захлопывание аортального клапана, что сопровождается повышением давления в аорте, формирующим дикротическую волну g . Интервал времени, представленный отрезком b -e , соответствует периоду изгнания крови из левого желудочка.

СГ периферических артерий отличаются от кривых центрального пульса более округлыми очертаниями вершины основной волны, отсутствием волн а и i , иногда и инцизуры, более выраженной дикротической волной, часто появлением второй диастолической волны. Интервал между вершинами основной и дикротической волн бедренного пульса соответствует, по мнению Вецлера и Бегера (К. Wezler, A. Böger, 1939), времени основного колебания артериального пульса и используется для расчета ударного объема сердца.

При оценке формы артериальной СГ придают значение крутизне нарастания анакроты, характеру перехода ее в катакроту, наличию и расположению дополнительных зубцов, выраженности дикротической волны. Форма кривых центрального пульса в значительной мере зависит от периферического сопротивления. При низком периферическом сопротивлении СГ центральных артерий имеют круто поднимающуюся анакроту, острые вершины и глубокие инцизуры; при высоком периферическом сопротивлении изменения противоположны.

Абсолютные значения амплитуд отдельных компонентов СГ обычно не оцениваются, т. к. метод С. не имеет калибровки. Для диагностических целей соотносят амплитуды компонентов СГ с амплитудой основной волны. Аналогично вместо оценки абсолютных значений временных интервалов СГ используют их соотношение в процентах с общей продолжительностью систолической волны; это позволяет проводить временной анализ СГ независимо от частоты сердечных сокращений.

Синхронно записанные СГ центрального и периферического пульса используют для определения скорости распространения пульсовой волны по артериям; она вычисляется как частное от деления длины пути пробега волны на длительность интервала между началами анакрот пульса исследуемых артерий. Скорость распространения пульсовой волны в аорте (сосуде эластического типа) рассчитывают по СГ сонной и бедренной артерий, в периферических артериях (сосудах мышечного типа), - по объемным СГ, зарегистрированным на плече и нижней трети предплечья или на бедре и нижней трети голени. Отношение скорости распространения пульсовой волны по сосудам мышечного типа к скорости распространения пульсовой волны по сосудам эластического типа у здоровых людей находится в пределах 1,1-1,3. Скорость распространения пульсовой волны зависит от модуля упругости артериальной стенки; она увеличивается при повышении напряжения артериальных стенок или их уплотнения и изменяется с возрастом (от 4 м/с у детей до 10 м/с и более у лиц старше 65 лет).

Флебосфигмограмма регистрируется обычно с яремной вены. Основные элементы СГ яремной вены в норме представлены положительными волнами а , с , d и отрицательными - х- , у -коллапсами (рис. 2 ). Волна а отражает систолу правого предсердия, волна с обусловлена воздействием на яремную вену пульсации сонной артерии. Перед волной с иногда выявляется зубец b , совпадающий по времени с изометрическим напряжением желудочков сердца. Формирование х -коллапса на отрезке а- b обусловлено диастолой предсердий, на отрезке b - быстрым опорожнением полых вен в правое предсердие в результате оттягивания вниз атриовентрикулярной перегородки во время систолы правого желудочка, а также понижения внутригрудного давления вследствие изгнания крови в брюшную аорту. Следующая положительная волна d обусловлена заполнением полых вен и правого предсердия кровью при закрытом трикуспидальном клапане. После открытия клапана кровь из правого предсердия устремляется в правый желудочек, что способствует опорожнению полых вен, - наступает диастолический у -коллапс. По мере заполнения правого желудочка кровью скорость опорожнения предсердия уменьшается, давление в нем повышается, кровенаполнение вен примерно с середины диастолы желудочка вновь увеличивается, что отражается появлением на флебосфигмограмме второй диастолической волны d (застойная волна).


Рис. 2. Флебосфигмограмма яремной вены в норме: а - предсердная волна; b - зубец, отражающий изометрическое напряжение желудочков; с - передаточная волна пульса сонной артерии; d, d" - диастолические волны; х - систолический коллапс ; y - диастолический коллапс.

Диагностическое значение . Патологические изменения артериальных СГ при некоторых заболеваниях имеют определенную специфичность. При стенозе устья аорты на анакроте центральных СГ появляются зазубрины (анакротический пульс), время подъема анакроты удлиняется, иногда кривые приобретают вид петушиного гребня (рис. 3, а ). При гипертрофическом субаортальном стенозе (см. Кардиомиопатии) время подъема анакроты укорачивается, соотношение длительности анакроты и изгнания уменьшается. Недостаточность клапанов аорты проявляется резким возрастанием амплитуды всех волн, сглаживанием или исчезновением инцизуры на СГ центральных артерий (рис. 3, б ), появлением высокочастотных осцилляций на анакроте бедренного пульса (рис. 3, в ) и на всех объемных СГ нижних конечностей. При коарктации аорты амплитуда центральных СГ и объемных СГ верхних конечностей увеличена, длительность накроты СГ сонной артерии укорочена, вершина пульсовой волны расщеплена; СГ бедренной артерии и объемные СГ нижних конечностей представляют собой низкоамплитудные куполообразные волны, лишенные дикроты (треугольный пульс, рис. 3, г ). Облитерирующие и окклюзионные поражения периферических артерий проявляются на объемных СГ, зарегистрированных ниже места окклюзии, снижением амплитуды пульсовых волн (в тяжелых случаях регистрируется прямая линия) и отсутствием дикроты (монокротический пульс). При поражении сосуда одной конечности или неравномерной облитерации артерий в случаях их системного поражения имеет место разница амплитуд и формы кривых пульса на симметричных артериях. Преобладание коллатерального зависит от частоты сердцебиений; при тахикардии волна d уменьшена, волна d " отсутствует.

Техническая реализация метода фотоплетизмографии ,

параметры регистрируемого сигнала .

Пальцевая фотоплетизмография.

Исследуемым органом является концевая фаланга кисти или стопы.

(в дистальных фалангах пальцев кисти и стопы наиболее интенсивные значения артериального и венозного кровообращения.)


Анакрота – восходящий участок пульсовой волны

Нисходящий участок пульсовой волны называется катакротой .

На нисходящем участке есть волна, называемая дикротической , обусловленная захлопыванием полулунных клапанов между левым желудочком сердца и аортой.

(А 2 ) образуется за счёт отражения объёма крови от аорты и крупных

магистральных сосудов и частично соответствует диастолическому периоду сердечного цикла.

Дикротическая фаза несет информацию о тонусе сосудов.

Вершина пульсовой волны соответствует наибольшему объёму крови, а её противолежащая часть – наименьшему объёму крови в исследуемом участке ткани.

Частота и продолжительность пульсовой волны зависят от особенностей работы сердца , а величина и форма её пиков от состояния сосудистой стенки .


Волны первого порядка (I), или объемный пульс

Волны второго порядка (II) имеют период дыхательных волн

Волнами третьего порядка (III) называют все регистрируемые колебания с периодом, большим, чем период дыхательных волн

Использование метода фотоплетизмографии в медицинской практике .

Базовый вариант.

После наложения на дистальную фалангу пальца руки или ноги датчика-прищепки и активации регистрации фотоплетизмограммы в интерфейсной части устройства выполняется последовательное измерение значений объемного пульса в различные фазы исследования воздействия на организм человека изучаемого фактора. Исследование объемного пульса при перемене положения конечности.

Механизм: Изменение сосудистых артериальных рефлексов при различных положениях конечности - превалирование сосудорасширяющего рефлекса при поднятии конечности вверх, при опускании конечности вниз превалирует сосудосуживающий рефлекс.

При развитии сосудосуживающего эффекта амплитуда пульсовых волн нарастает, при развитии сосудорасширяющего эффекта амплитуда пульсовых волн уменьшается.

Возможно выявить подвижность механизмов, регулирующих распределение крови, что имеет существенное значение при выявлении локальных капиллярных нарушений и сосудистых заболеваний на уровне всего организма.

Техника окклюзионной фотоплетизмографии

заключается в следующем: на уровне верхней трети плеча накладывается тонометрическая манжета и в нее нагнетается воздух до давления, на 30 мм рт. ст превышающее артериальное давление. Давление в манжете сохраняется в течение 5 минут, затем воздух быстро стравливается. В течении первых 30 секунд в норме возникает пиковое объемной и линейной скорости кровотока, постепенно снижающееся к 3-й минуте.

Методика определения артериального давления в плечевой артерии с помощью фотоплктизмографии.

Декомпрессионный вариант:

В резиновую манжету, соединенную с манометром, нагнетается воздух до исчезновения периферического пульса. Затем с постоянной скоростью выпускается воздух. Когда давление в манжете соответствует артериальному, объем крови в пальце увеличивается, что проявляется появлением пульсации; когда давление соответствует венозному давлению, объем крови снова уменьшается. По экспериментальным данным такая методика регистрации артериального давления является наиболее точной и может использоваться при его уменьшении.

Изучаемые параметры фотоплетизмограммы:

По вертикальной оси изучаются амплитудные характеристики пульсовой волны, соответствующие анакротическому и дикротическому периоду. Несмотря на то, что эти параметры являются относительными, их изучение в динамике предоставляет ценную информацию о силе сосудистой реакции. В этой группе признаков изучаются:

1. амплитуда анакротической и дикротической волны,

Последний показатель имеет абсолютное значение и имеет собственные нормативные показатели.

По горизонтальной оси изучаются временные характеристики пульсовой волны, предоставляющие информацию о длительности сердечного цикла, соотношении и длительности систолы и диастолы. Эти параметры имеют абсолютные значения и могут сравниваться с существующими нормативными показателями.


Амплитуда пульсовой волны или анакротической фазы (АПВ), определяется по вертикальной оси как: АПВ = В2-В1.

lНормативных значений не имеет, оценивается в динамике.

Амплитуда дикротической волны (АДВ), определяется по вертикальной оси как: АДВ = В4-В5.

lВ норме составляет 1/2 от величины амплитуды пульсовой волны.

Индекс дикротической волны (ИДВ), определяется в процентах как: ИДВ = ((В3-В5)/(В2 – В1))·100

lНормативное значение составляет%.

Длительность анакротической фазы пульсовой волны (ДАФ), определяется в секундах по горизонтальной оси как: ДАФ = В3-В1

Длительность дикротической фазы пульсовой волны (ДДФ), определяется в секундах по горизонтальной оси как: ДДФ = В5-В3 .

lНормативное значение не установлено.

Длительность пульсовой волны (ДПВ ) , определяется в секундах по горизонтальной оси как: ДПВ = В5-В1.

lНормативные значения по возрастным группам:

Возраст, лет

Длительность пульсовой волны, сек

Длительность систолической фазы сердечного цикла (ДС), определяется в секундах по горизонтальной оси как: ДС = В4-В1.

lНормативный параметр вычисляемый, равен произведению длительности ДПВ и 0.324.

Длительность диастолической фазы сердечного цикла (ДД), определяется в секундах по горизонтальной оси как: ДД = В5-В4.

lВ норме равна остатку вычитания длительности систолы от общей продолжительности пульсовой волны.

Частота сердечных сокращений (ЧСС), определяется в ударах в минуту как: ЧСС = 60/ДПВ.

lНормативные значения частоты сердечных сокращений по Кассирскому:

Возраст, лет

ЧСС в мин

Методики клинической фотоплетизмографии (часть 3).

Качественные критерии оценки фотоплетизмограмм.

Перечисленные количественные показатели не предоставляют исчерпывающую информацию о характере пульсовой волны. Немаловажное значение имеет качественная оценка формы пульсовых волн нередко имеющее решающее значение. При анализе формы пульсовых волн привлекаются термины, заимствованные из клинической практики, такие, как pulsus tardus, pulsus celer.

При повышенном периферическом сопротивлении, например, при сочетании атеросклероза и гипертонической болезни, а особенно у больных аортальным стенозом форма пульсовых волн соответствует pulsus tardus: подъем пульсовой волны пологий, неравномерный, вершина смещается к концу систолы («позднее систолическое выпячивание»).

https://pandia.ru/text/78/415/images/image011_47.gif" height="1 src=">

Рис 4 Пульсовые волны типа pulsus tardus при повышенном периферической сопротивлении.

При низком периферическом сопротивлении и большом систолическом выбросе, характерном больным с аортальной недостаточностью, пульсовые волны имеют вид pulsus celer:подъем пульсовой волны имеет крутой подъем, быстрое снижение и малозаметную инцизуру. Между локализацией инцизуры, величиной периферического сопротивления и упругим состоянием артерий отмечается определенная зависимость: при пониженной эластичности сосудов инцизура приближается к вершине, а при вазодилятации не выходит за пределы нижней половины пульсовой кривой.

https://pandia.ru/text/78/415/images/image013_12.jpg" width="397" height="132">

Рис 6. Симптом «петушиного гребня». Симптомы получены в момент избыточного воздействия дозы инфракрасного терапевтического лазера.

https://pandia.ru/text/78/415/images/image015_14.jpg" width="225" height="110">

Рис 8. Ступенька на вершине пульсовой волны.

https://pandia.ru/text/78/415/images/image017_14.jpg" width="339" height="254 src=">

Рис 10. Отсутствие дикротической волны на пульсограмме у больной сахарным диабетом.

Кроме того, зарегистрированы следующие патологические отклонения при различных заболеваниях:

r отсутствие дикротического зубца указывает на наличие атеросклероза, гипертонической болезни
(рис 10) ;

r различие объемного пульса на руках и ногах может указывать на коарктацию аорты;

r слишком большой объемный пульс – возможно, у больного незаращенный боталлов проток;

r при облитерирующем эндартериите амплитуда пульсовых волн снижена на всех пальцах пораженной конечности;

r при проведении функциональной пробы с переменой положения конечности у больных в начальной фазе облитерирующего эндартериита резко снижен сосудорасширяющий эффект при подъеме ноги (невысокая амплитуда пульсовых волн) и значительно выражен сосудосуживающий эффект при опускании ноги;

r при проведении функциональной пробы с переменой положения конечности у больных с облитерирующим атеросклерозом в стадии субкомпенсации при опускании конечности амплитуда пульсовых волн значительно уменьшается.

Половые и возрастные особенности фотоплетизмограмм:

1. В период с 8 до 18 лет амплитуда пульсовой волны имеет тенденцию к увеличению, с 19 до 30 лет стабилизируется, после 50-ти амплитуда пульсовой волны вновь нарастает.

2. По наблюдениям (1967) пульсовые волны у детей отличаются крутым подъемом. Вершина кривой имеет округлые очертания. Инцизура у 72% здоровых детей располагается в верхней или средней трети пульсовой волны, у 28% - в нижней трети пульсовой волны. У абсолютного большинства детей инцизура и начальная диастолическая волна отчетливо выражены.

3. Половые различия – у девочек до 16 лет по сравнению с мальчиками, амплитуда пульсовой волны выше.

Другие особенности фотоплетизмограмм:

1. Величина объемного пульса не зависит от времени года, но сосудистые реакции легче вызываются в июле и августе (Hetzman 1948).

2. При магнитных бурях, прохождении атмосферных фронтов и других колебаниях погоды возникают большие колебания периферического капиллярного кровообращения, особенно у больных ревматизмом – возрастает количество реакций, указывающих на расширение сосудов. При контрольном измерении во время физиотерапевтических процедур отмечается явное уменьшение неповреждающей дозы физического фактора.

Когда сердце во время систолы перекачивает кровь в аорту, в первый момент растягивается только начальная часть аорты, т.к. инерция крови, находящейся в аорте, предупреждает немедленный отток крови на периферию. Однако возросшее давление в начальной части аорты преодолевает инерцию, и фронт волны, растягивающей стенку сосуда, распространяется дальше вдоль аорты. Это явление называют распространением пульсовой волны в артериях.

Скорость распространения пульсовой волны в аорте в норме составляет от 3 до 5 м/сек, в крупных артериальных ветвях - от 7 до 10 м/сек, а в мелких артериях - от 15 до 35 м/сек. В целом, чем больше емкость того или иного участка сосудистой системы, тем меньше скорость распространения пульсовой волны, поэтому скорость распространения пульсовой волны в аорте гораздо ниже, чем в дистальных отделах артериальной системы, где мелкие артерии отличаются меньшей податливостью сосудистой стенки и меньшей резервной емкостью. В аорте скорость распространения пульсовой волны в 15 раз меньше, чем скорость кровотока, т.к. распространение пульсовой волны представляет собой особый процесс, лишь незначительно влияющий на продвижение всей массы крови вдоль сосуда.

Сглаживание пульсовых колебаний давления в мелких артериях, артериолах и капиллярах. На рисунке показаны типичные изменения рисунка пульсового колебания по мере того, как пульсовая волна проходит по периферическим сосудам. Особое внимание следует обратить на три нижние кривые, где интенсивность пульсаций становится все меньше в мелких артериях, артериолах и, наконец, в капиллярах. В действительности, пульсовые колебания стенки капилляров наблюдаются, если резко увеличены пульсации в аорте или предельно расслаблены артериолы.

Снижение амплитуды пульсаций в периферических сосудах называют сглаживанием (или демпфированием) пульсовых колебаний. К этому приводят две основные причины: (1) сосудистое сопротивление кровотоку; (2) податливость сосудистой стенки. Сосудистое сопротивление способствует сглаживанию пульсовых колебаний стенки сосудов, потому что все меньший объем крови продвигается вслед за фронтом пульсовой волны. Чем больше сосудистое сопротивление, тем больше препятствий для объемного кровотока (и меньше его величина). Податливость сосудистой стенки также способствует сглаживанию пульсовых колебаний: чем больше резервная емкость сосуда, тем больший объем крови необходим, чтобы вызвать пульсацию во время прохождения фронта пульсовой волны. Таким образом, можно сказать, что степень сглаживания пульсовых колебаний прямо пропорциональна произведению сопротивления сосуда на его резервную емкость (или податливость сосудистой стенки).

Аускультативный метод измерения давления

Совсем не обязательно вводить иглу в артерию пациента для измерения артериального давления при обычном клиническом обследовании, хотя в ряде случаев применяют прямые методы измерения давления. Вместо этого используют непрямые методы, чаще всего аускультативный метод определения величины систолического и диастолического давления.

Аускультативный метод . На рисунке представлен аускультативный метод определения величины систолического и диастолического давления. Стетоскоп располагается в области локтевого сгиба над лучевой артерией. На плечо накладывается резиновая манжетка для нагнетания воздуха. Все время, пока давление в манжетке остается ниже, чем в плечевой артерии, стетоскоп не улавливает никаких звуков. Однако когда давление в манжетке увеличивается до уровня, достаточного для перекрытия кровотока в плечевой артерии, но только во время диастолического снижения давления в ней, можно услышать звуки, сопровождающие каждую пульсацию. Эти звуки известны как тоны Короткова.

Истинную причину тонов Короткова все еще обсуждают, однако главной причиной их появления, бесспорно, является то, что отдельным порциям крови приходится прорываться через частично перекрытый сосуд. При этом в сосуде, расположенном ниже места наложения манжетки, ток крови становится турбулентным и вызывает вибрацию, что является причиной появления звуков, слышимых при помощи стетоскопа.

Для измерения артериального давления аускультативным методом давление в манжетке сначала поднимают выше уровня систолического давления. Плечевая артерия при этом пережата таким образом, что кровоток в ней полностью отсутствует и тоны Короткова не слышны. Затем давление в манжетке постепенно понижают. Как только давление в манжетке становится ниже систолического уровня, кровь начинает прорываться через сдавленный участок артерии во время систолического подъема давления. В это время в стетоскопе слышны звуки, похожие на стук, возникающие синхронно с сердцебиениями. Давление в манжетке во время появления первого звука принято считать равным систолическому давлению в артерии.

По мере того, как давление в манжетке продолжает снижаться, характер тонов Короткова меняется: они становятся более грубыми и громкими. Наконец, когда давление в манжетке падает до уровня диастолического, артерия под манжеткой во время диастолы остается непережатой. Условия, необходимые для формирования звуков (прорыв отдельных порций крови через суженную артерию), исчезают. В связи с этим звуки внезапно становятся приглушенными, и после снижения давления в манжетке еще на 5-10 мм рт. ст. полностью прекращаются. Давление в манжетке во время изменения характера звука принято считать равным диастоличе-скому давлению в артерии. Аускультативный метод измерения систолического и диастолического давления не является абсолютно точным. Ошибка может составить 10% по сравнению с прямым измерением давления в артерии с помощью катетера.

Нормальный уровень артериального давления , измеренный аускультативным методом. На рисунке показаны нормальные уровни систолического и диастолического артериального давления в зависимости от возраста. Постепенное увеличение давления с возрастом объясняют возрастными изменениями регуляторных механизмов, контролирующих кровяное давление. В первую очередь почки ответственны за долговременную регуляцию артериального давления. Как известно, функция почек заметно меняется с возрастом, особенно у людей старше 50 лет.

Изобретение относится к области медицины, именно к диагностике. Устанавливают в наиболее доступном месте на теле человека электроды, подключенные к реографу, и регистрируют с него электрические сигналы, амплитуда которых пропорциональна величине кровенаполнения ткани. После чего электрический сигнал преобразуют в набор гармонических составляющих, из которых выделяют гармоники, каждая из которых соответствует определенному участку магистральных сосудов. Затем определяют расстояние между вершинами пиков в каждой гармонике с получением массива данных для построения гистограмм, по которым судят о времени пробега пульсовой волны по артериальной системе. При этом скорость распространения пульсовой волны определяют из соотношения 2L/T, где L - длина магистрального сосуда, соответствующая определенной гармонике, а Т - суммарное время пробега прямой и отраженной пульсовой волны. Способ позволяет измерять скорость распространения пульсовой волны в режиме скрининга с получением достоверной информации при минимальной эмоциональной нагрузке на пациента, за счет одной точки тела для регистрации формы ПВ с помощью реографа. 7 ил.

Изобретение относится к области медицины и может быть использовано для неинвазивного измерения скорости распространения пульсовой волны при проведении клинических исследований гемодинамики в сосудах артериального русла.

В настоящее время современной медициной установлено, что ригидность артерий является маркером сердечно-сосудистых (СС) нарушений и может использоваться для выявления пациентов с высоким СС риском и с целью лучшего подбора интенсивности терапии. Для оценки ригидности магистральных сосудов артериальной системы может использоваться скорость распространения пульсовой волны (СРПВ), которая является независимым предиктором инсультов и ишемической болезни сердца.

Для оценки эластичности стенки сосудов используются каротидно-феморальная и каротидно-радиальная скорости распространения пульсовой волны (СРПВ). В последнее время наиболее пристальный интерес проявляется к каротидно-феморальной СРПВ, которая характеризует жесткость стенок аорты (эластический тип артерий) и является независимым предиктором сердечно-сосудистой смертности, сердечно-сосудистых катастроф как у больных артериальной гипертонией, так и в общей популяции в целом. Объективным критерием выраженного повышения жесткости аорты в соответствии с рекомендаций ЕОАГУЕОК 2007 г. принято значение СРПВ, равное 12 м/с. Каротидно-радиальная СРПВ традиционно используется для оценки состояния периферического кровообращения и является мерой атеросклеротических изменений сосудов артериального русла.

Известен ряд неинвазивных способов, устройств и систем, основанных на различных физических принципах, предназначенных для регистрации и измерения параметров пульсовой волны (ПВ). С этой целью наиболее широко используются плетизмографы, реографы и сфигмографы, в состав которых входят датчики ПВ, преобразующие волну давления крови в электрический сигнал с последующей регистрацией и обработкой этого сигнала оконечной аппаратурой.

При использовании плетизмографии регистрация волны давления крови осуществляется с помощью манжет с пневматическим наддувом, надеваемых обычно на предплечье одной из рук. Реже с этой целью используются нижняя конечность или пальцы руки или ноги. С приходом волны давления крови к месту регистрации изменяется объем ткани, находящейся под манжетой, и это изменение объема приводит к изменению давления воздуха в ней. Датчики давления воздуха, встроенные в манжету, регистрируют эти изменения и преобразуют их в электрический сигнал. При этом считается, что изменение давления в манжете достаточно близко соответствует характеру волны давления крови в исследуемой артерии.

В сфигмографических (СГ) приборах регистрация пульсовой волны осуществляется с помощью пьезоэлектрических преобразователей и требует жесткой фиксации датчиков на теле пациента в местах наиболее близкого положения артерий к коже. Число таких мест на теле человека резко ограничено, и наиболее часто для регистрации ПВ используют плечевую и сонную артерии, а также бедренную артерию. При этом усилие давления датчика на кожу должно выбираться из условия достаточно плотного контакта с артерией, чтобы получить максимальную амплитуду сигнала и в то же время не допускать пережатия этой артерии, чтобы не нарушать характер кровотока в ней.

С приходом волны давления крови к месту регистрации увеличивается кровенаполнение ткани, приводящее к изменению ее сопротивления электрическому току, пропускаемому через эту ткань. Регистрируя изменение величины омического сопротивления ткани, можно определить форму ПВ. На этом принципе регистрации основана работа реографов. В отличие от плетизмографии и сфигмографии, реографический метод регистрации позволяет регистрировать форму ПВ практически в любом доступном месте на теле человека.

Общепринятая методика измерения аортальной СРПВ базируется на одновременной регистрации времени прихода ПВ к двум точкам регистрации, удаленным на различное расстояние от сердца. Синхронно записанные СГ центрального и периферического пульса используют для определения скорости распространения пульсовой волны по артериям; она вычисляется как частное от деления длины пути пробега волны на длительность интервала между началами анакрот пульса исследуемых артерий. По разнице во времени прихода начала ПВ к этим местам определяется время задержки ΔТ сигнала. Значение V скорости СРПВ определяется как отношение разницы в длине сосудов ΔL от точек регистрации до сердца к величине задержки ΔT. Это соотношение ΔL/ΔТ справедливо, если время задержки определяется при распространении ПВ по сосудам одинакового типа и сечения. В противном случае при определении величины V необходимо учитывать разницу в значениях скоростей для различных сосудов, однако это условие достаточно трудно выполнимо. Отношение скорости распространения пульсовой волны по сосудам мышечного типа к скорости распространения пульсовой волны по сосудам эластического типа у здоровых людей находится в пределах 1,1-1,3. Скорость распространения пульсовой волны зависит от модуля упругости артериальной стенки; она увеличивается при повышении напряжения артериальных стенок или их уплотнения и изменяется с возрастом (от 4 м/с у детей до 15 м/с у лиц старше 65 лет), а также при атеросклерозе.

Известен способ измерения аортальной СРПВ (см. Lehmann E.D. Noninvasive measurement of aortic compliance: methodological considerations // Path. Biol. - 1999 - Vol.47, №7 - P.716-730) с использованием сфигмографии, который базируется на измерении разницы во времени прихода ПВ к пьезоэлектрическим датчикам, установленным на сонной артерии и на бедренной артерии в месте выхода ее из-под пупартовой связки. Скорость распространения пульсовой волны в аорте (сосуде эластического типа) рассчитывают по СГ сонной и бедренной артерий, в периферических артериях (сосудах мышечного типа), по объемным СГ, зарегистрированным на плече и нижней трети предплечья или на бедре и нижней трети голени. Вышеуказанный способ является наиболее близким по технической сущности к заявляемому способу и поэтому выбран в качестве прототипа.

Медицинская практика показывает, что при работе со сфигмографическими приборами существует ряд проблем, не позволяющих применять их для скрининг-измерений. Так, при исследовании полных людей, чувствительности пьезоэлектрического датчика может не хватить для регистрации сигналов из-за большой толщины подкожного слоя жира, необходимость установки датчика в паховой области создает проблемы этического характера, результаты единичных измерений с использованием пьезодатчиков имеют значительный разброс и для получения достоверных сведений необходимо проведение достаточно большого количество измерений.

Решаемой технической задачей является создание способа измерения скорости распространения пульсовой волны в режиме скрининга при минимуме затрат времени на получении достоверной информации и при минимальной эмоциональной нагрузке на пациента.

Достигаемым техническим результатом является возможность использования одной точки тела для регистрации формы ПВ с помощью реографа с последующей обработкой спектра сигнала с применением полосовых фильтров, граничные частоты которых выбираются в соответствии с номерами гармоник, отвечающих условиям резонанса для исследуемой области сосудистой системы, с целью определения времени задержки прихода отраженных волн давления крови.

Для сокращения времени обработки результатов измерений используется оцифровка полученных гармонических составляющих сигнала, и на основе массива данных с использованием специальной программы осуществляется построение гистограмм, позволяющих оперативно определить время задержки прихода отраженных пульсовых волн на исследуемом участке артериального русла.

Для достижения технического результата в предлагаемом способе измерения скорости распространения пульсовой волны, основанном на измерении времени пробега отраженной волны между определенными точками отражения артериального русла, заключающемся в установке в наиболее доступном месте на теле человека электродов, подключенных к реографу, и регистрации с него электрического сигнала, амплитуда которого пропорциональна величине кровенаполнения ткани, электрический сигнал преобразуют в набор гармонических составляющих, из которых выделяют гармоники, каждая из которых соответствует определенному участку магистральных сосудов, после чего определяют расстояние между вершинами пиков в каждой гармонике с получением массива данных для построения гистограмм, по которым судят о времени пробега пульсовой волны по артериальной системе, скорость распространения пульсовой волны определяют из соотношения 2L/T, где L - длина магистрального сосуда, соответствующая определенной гармонике, а Т - суммарное время пробега прямой и отраженной пульсовой волны.

Указанные выше отличительные признаки в совокупности с известными позволяют сократить время измерений скорости распространения пульсовой волны в режиме скрининга, что позволяет рассчитывать на широкое его применение в клинических исследованиях, когда возникает необходимость в получении значения контролируемого параметра.

Использование предлагаемого сочетания существенных отличительных признаков в известном уровне техники не обнаружено, следовательно, предлагаемое техническое решение соответствует критерию патентоспособности «новизна».

Единая совокупность новых существенных признаков с общими известными обеспечивает решение поставленной задачи, является неочевидной для специалистов в данной области техники и свидетельствует о соответствии заявленного технического решения критерию патентоспособности «изобретательский уровень».

Заявляемый способ реализуется устройством, представленным на фигуре 1, на фигуре 2 приведена форма пульсовой волны, на фигуре 3 приведены гармоники ПВ, на фигуре 4 показана гистограмма, полученная в результате оцифровки 3-й гармоники ПВ, регистрируемой на пальцах ноги Е. На фигуре 5 приведена форма пульсовой волны на пальцах руки Е, на фигуре 6 приведены гармоники ПВ, на фигуре 7 показана гистограмма, полученная в результате оцифровки 4-й гармоники ПВ, регистрируемой на пальцах руки Е.

Устройство, реализующее заявляемый способ, содержит реограф 2, подсоединяемый к телу пациента с помощью электродов 1 (датчика ПВ), аналогово-цифровой преобразователь 3 (АЦП), вход которого соединен с выходом реографа, а выход АЦП подключен к компьютеру 4.

Способ измерения СРПВ реализуется следующим образом. На теле пациента выбирается место, соответствующее исследуемой артериальной области, на которое устанавливаются электроды 1, выполняющие роль датчика ПВ (см. фигуру 1), подсоединенные к входу реографа 2. Для измерения СРПВ по аорте (эластический тип артерий) и бедренным артериям электроды можно установить на пальцах одной из ног пациента, а для измерения СРПВ по артериям мышечного типа электроды размещаются на пальцах одной из рук. После чего измеряют расстояние от мест установки электродов до сердца, заносят полученное значение в базу данных, куда также вносятся данные о пациенте (пол, возраст, антропометрические данные пациента, место установки электродов и т.д.), и производят запись сигнала в течение фиксированного времени. В зависимости от имеющегося лимита времени и состояния пациента длительность записи может варьироваться в пределах от 30 секунд до 300 секунд. Записанный сигнал архивируется и может быть воспроизведен на экране компьютера 4.

В качестве примера на фигуре 2 приведена форма пульсовой волны, зарегистрированной на пальцах ноги добровольца Е. Ниже на фигуре 3 приведены формы гармонических составляющих для этих сигналов, полученных при использовании фильтров с различными значениями граничных частот. Границы частот используемого частотного фильтра выбираются в зависимости от длины сосудистого русла и частоты сердечных сокращений пациента и устанавливаются в соответствующем окне программы. В соответствии с установленными частотами границ фильтра производится трансформация исходного спектра записанного сигнала, и полученная после такого преобразования форма гармоники воспроизводится на экране компьютера. Как видно из приведенной на фигуре 3 записи форм гармонических составляющих ПВ, зарегистрированной на пальцах ноги Е., условиям резонанса на артериальной магистрали от сердца до стопы наиболее соответствует 3-я гармоника сигнала. На этой гармонике наблюдается характерное для резонанса увеличение амплитуды сигнала (раскачка) во времени относительно начала процесса, возобновляющегося с каждым сокращением сердца и приходом волны давления крови к месту измерения. Периоды следования пиков 3-й гармоники сигнала определяются временем задержки прихода отраженных волн к месту их регистрации. Для измерения величины задержки подается команда на оцифровку полученного сигнала и осуществляется построение гистограммы в соответствии с выбранными параметрами (число и ширина временных интервалов, диапазон амплитуд, включаемых в область измерений уровней сигналов).

Значения максимумов на шкале времени гистограммы соответствует времени пробега ПВ между определенными точками отражения, положение которых определяется в соответствии с анатомией и антропологическими параметрами пациента. На фигуре 4 приведен вид гистограммы, полученной при установке электродов на пальцах ноги Е. На приведенной на фигуре 4 гистограмме на оси ординат указывается число зарегистрированных временных интервалов за время измерения для всех видов колебаний, реализуемых в конкретном случае. По значениям длительности интервалов на оси абсцисс, соответствующих максимальному числу зарегистрированных периодов колебаний, можно определить величину задержки отраженных волн. Полученные длительности соответствуют двойному времени пробега прямой и отраженной волны давления крови между наиболее значимыми областями отражения в исследуемой области артериальной системы. В случае установки электродов на пальцах ноги наиболее значимыми областями отражения будут являться сердце, бифуркация аорты и мелкие сосуды терминального русла стопы. В соответствии с этим на гистограмме должно быть два пика, соответствующих времени пробега ПВ от стопы до бифуркации и обратно и от стопы до сердца и обратно к стопе. Для описываемого случая время пробега отраженной ПВ от стопы до сердца составляет 0,166 с, а время пробега от стопы до бифуркации - 0,105 с. При этом время пробега по аорте ретроградной волны, определяемое как разность времен пробега ПВ от стопы до сердца и от стопы до бифуркации, составляет 0,061 с. При длине аорты Е., равной 45 см, значение аортальной СРПВ составляет 7,4 м/с. Значение СРПВ для бедренной артерии при расстоянии от бифуркации аорты до стопы 95 см составляет 8,2 м/с.

В случае установки электродов на другом участке артериального русла того же пациента условиям резонанса будет соответствовать другая гармоническая составляющая сигнала в соответствии с длиной этого участка, ограниченного точками наибольшего отражения ПВ. Так, в случае установки на пальцах руки местами наибольшего отражения будут сердце с одной стороны и мелкие сосуды терминального русла кисти с другой стороны. На фигурах 5 и 6 приведены форма сигнала ПВ, зарегистрированного на пальцах руки добровольца Е., и формы гармонических составляющих этого сигнала. Как видно из фигуры 6, условиям резонанса на этом участке артериального русла наиболее близко соответствует 4-я гармоника. На фигуре 7 приведена гистограмма, из которой видно, что максимум распределения временных интервалов, соответствующих времени задержки прихода отраженных волн на участке от сердца до пальцев руки, составляет 0,19 секунды. При длине этого участка артериального русла, равной 79 см, значение СРПВ составляет 8,4 м/с. Полученное значение СРПВ для плечевой артерии близко к значению СРПВ, измеренному в бедренной артерии, и характерно для сосудов мышечного типа.

Способ измерения скорости распространения пульсовой волны, основанный на измерении времени пробега отраженной волны между определенными точками отражения артериального русла, заключающийся в установке в наиболее доступном месте на теле человека электродов, подключенных к реографу, и регистрации с него электрического сигнала, амплитуда которого пропорциональна величине кровенаполнения ткани, отличающийся тем, что электрический сигнал преобразуют в набор гармонических составляющих, из которых выделяют гармоники, каждая из которых соответствует определенному участку магистральных сосудов, после чего определяют расстояние между вершинами пиков в каждой гармонике с получением массива данных для построения гистограмм, по которым судят о времени пробега пульсовой волны по артериальной системе, скорость распространения пульсовой волны определяют из соотношения 2L/T, где L - длина магистрального сосуда, соответствующая определенной гармонике, а T - суммарное время пробега прямой и отраженной пульсовой волны.

Изобретение относится к медицине, касается использования показателей выживаемости пациентов с хронической сердечной недостаточностью (ХСН) ишемической этиологии.

Изобретение относится к медицине, а именно к эндокринологии, кардиологии. Способ включает определение скорости распространения пульсовой волны по аорте. При этом измерение скорости распространения пульсовой волны по аорте проводят до и после ежедневного одноразового в течение 5 дней воздействия на шейные симпатические ганглии бегущим магнитным полем (БМП), частотой 50-100 Гц, индукцией магнитного поля 15-50 мТл и частотой сканирования вокруг шеи 8-12 Гц с экспозицией 10-15 мин. Сравнивают полученные значения скоростей между собой. При этом, если скорость распространения пульсовой волны по аорте после воздействия БМП снижается по сравнению с исходной менее чем на 10%, прогнозируют высокий риск развития артериальной гипертонии с вероятностью 80% и более. При снижении скорости распространения пульсовой волны вдоль аорты после воздействия БМП по сравнению с исходной более чем на 27% прогнозируют низкий риск развития артериальной гипертонии с вероятностью менее 30%. Способ позволяет определить риск развития артериальной гипертонии без медикаментозного вмешательства, повышает степень достоверности диагностики развития артериальной гипертонии у данных пациентов. 2 пр., 1 табл.

Изобретение относится к области медицины, именно к диагностике. Устанавливают в наиболее доступном месте на теле человека электроды, подключенные к реографу, и регистрируют с него электрические сигналы, амплитуда которых пропорциональна величине кровенаполнения ткани. После чего электрический сигнал преобразуют в набор гармонических составляющих, из которых выделяют гармоники, каждая из которых соответствует определенному участку магистральных сосудов. Затем определяют расстояние между вершинами пиков в каждой гармонике с получением массива данных для построения гистограмм, по которым судят о времени пробега пульсовой волны по артериальной системе. При этом скорость распространения пульсовой волны определяют из соотношения 2LT, где L - длина магистрального сосуда, соответствующая определенной гармонике, а Т - суммарное время пробега прямой и отраженной пульсовой волны. Способ позволяет измерять скорость распространения пульсовой волны в режиме скрининга с получением достоверной информации при минимальной эмоциональной нагрузке на пациента, за счет одной точки тела для регистрации формы ПВ с помощью реографа. 7 ил.

Одним из важнейших упражнений, без которого все другие упражнения не имеют смысла, является «пульсовая волна ». Это упражнение играет важную роль не только в оздоровительной части, но и в боевой, хотя само упражнение - одно из простейших.

Для того чтобы выполнять пульсовую волну, сначала научимся слушать свой пульс. Почувствовать биение пульса можно двумя способами.

Первый , которым пользуются медики. Этому способу, к примеру, обучали нас на занятиях лечебной гимнастики, которые я посещала перед родами:

Прижимаем пальцами лучевую артерию на запястье. Под пальцами ощущаем пульсирующие толчки крови. Послушайте эти удары некоторое время, потом попробуйте услышать своё сердце, это оно выталкивает кровь, и вы можете даже «увидеть», как оно сжимается и расширяется, выталкивая кровь в путешествие по артериям.

Сейчас много фильмов, в которых показывают второй способ слушания пульса. В славянской гимнастике этому способу придаётся особое смысловое значение. Это сонная артерия.

Так как славянская гимнастика, это практика казачья, а значит изначально боевая, то именно точке на сонной артерии придавался очень важный, и даже мистический, смысл.

Во всех боевых практиках область сонной артерии считается смертельно опасной. Даже лёгкое касание к ней вызывает инстинктивное чувство страха. Поэтому, частое касание этой точки в упражнении, это чувство страха смерти постепенно ослабляет, как любая прививка уменьшает риск заболевания.

Давайте сначала найдём эту точку. Прикоснитесь к шее под подбородком. Ниже находится гортань, защищённая хрящами. Аккуратно ощупайте хрящи и определите границы, начиная сверху под челюстью и вниз, до яремной ямки. Также аккуратно пройдитесь пальцами с обеих сторон переднебоковой мышцы шеи. Она чётко определяется от внутреннего угла ключицы к мочке уха, если голову немного повернуть в сторону.

Как раз на границе между этой мышцей и хрящами, находится мягкая впадинка, а в ней – сонная артерия. Делим впадинку от уха до ключицы на 3 части. Точка, которую мы ищем, находится между верхней и средней частями. В этой точке придавливаем артерию указательным или большим пальцем, можно указательным и средним одновременно, снизу вверх и вглубь, немножко по диагонали. Сражу же, ощущаем биение пульса.

Мы научились находить пульсирующую точку и можем переходить к главному:

выполнению упражнения.

Весь смысл этого упражнения - это дыхание, ритм которому задаёт наш пульс.

Продолжаем слушать пальцами пульс, и начинаем дышать в следующем ритме: 4 удара сердца – вдох, 4 удара – выдох. Будет сложно. У меня, почему-то, пульс вначале пытался «убегать».

Когда дыхание сольётся с ударами сердца, и вы запомните его ритм, можно убрать пальцы с пульсирующей точки и продолжать дышать по памяти в том же ритме.

Подключаем к работе своё образное мышление. Вдыхая, на 4 удара сердца, расширяем , выдыхая, также на 4 удара, собираем Ведогон в центре Яра. Можно своему сознанию и Ведогону помочь реальными движениями. Я, вдыхая, раздвигаю руки, физически ощущая, как расширяется Ведогон, а выдыхая, руками помогаю Ведогону сконцентрироваться в центре Яра.

Упражнение выполнять 5-7 минут. Важная цель упражнения достигнута: сознание, энергетика, дыхание и тело синхронизированы. Но при этом, достигнута и главная цель – колебания нашего Ведогона и вибрации Вселенной пришли в гармонию.

Помните, в статье «Строение Ведогона» было названо еще одно его название: « Поселенный пузырь ». На Востоке его называют Микрокосмос, а Вселенную – Макрокосмос. Вселенная это тоже «Поселенский пузырь», потому что мы, живые существа, в ней поселены. Поэтому и отдельная личность, и Вселенная обладают одинаковыми свойствами. Разница только в размерах и мощности.

Вселенная – большой пульсирующий организм. Каждый из нас – такая же пульсирующая Вселенная, со своим индивидуальным ритмом.

Мы уже говорили о том, что центральная ось вращения этой индивидуальной Вселенной, Меру (или Свиля), проходит через Яр. Центр Яра – наше сердце, поэтому его расширении и сжатие (диастола и систола) одновременно является расширением и сжатием Космического «Поселенского пузыря».

Для нашего здоровья очень важен ритм этой пульсации: расширение на вдохе на 4 удара сердца, и сжатие на выдохе, на 4 удара сердца. Нарушение этого ритма, этой гармонии приводит не только к болезням, но и смерти.

Почему желательно «Пульсом» начинать каждый день?

При помощи упражнения «Пульс» мы входим в гармонию с пульсацией Вселенной и начинаем наполнять себя её бесконечной энергией, потому что 4–4 – это общий Вселенский ритм.

В принципе, весь чётный ряд чисел обогащает энергией, отдаёт, делится ею с нами, наполняет бодростью, активизирует все процессы. Но мы в упражнении будем использовать только три числа: 2, 4, 8 .

Практикуйте «Пульс» в ритме 4-4, пока упражнение будет выполняться без усилий. Затем, по очереди, также до полного освоения выполняем упражнение в более сложных вариантах.

  1. Вдох на 4 удара сердца – расширяемся; задержка дыхания на 2 удара – расширение продолжается по инерции; выдох на 4 удара – сжимаем Ведогон. Длительность выполнения та же.
  2. Вдох на 4 удара сердца – расширяемся; задержка дыхания на 2 удара – расширение продолжается по инерции; выдох на 4 удара – сжимаем Ведогон; задержка дыхания на 2 удара с концентрацией в центре Яра.
  3. Более сложный вариант: вдох на 8 ударов (расширение); задержка дыхания на 4 удара; выдох на 8 ударов (сжатие).
  4. И последний: вдох на 8 ударов (расширение); задержка дыхания на 4 удара; выдох на 8 ударов (сжатие); задержка дыхания на 4 удара.

Последние два варианта – это уже для хорошо продвинутых. Нам достаточно второго варианта.

Ещё раз про расширение. Не переусердствуйте. Вы сами знаете возможности своего воображения, именно оно укажет границы. Чем больше будет тренировок, тем лучше будет работать воображение и тем дальше сможет расширяться Ведогон.

И ещё одно обязательное действие , которое нужно выполнить после завершения упражнения: это отщёлкивание . Научившись его выполнять, мы получаем инструмент мгновенного отключения. Например, если ощущаем попытку забрать энергию, или энергоинформационный удар, или просто неприятные ощущения после встречи или разговора, а также, чтобы отключиться от мыслеобраза, достаточно выполнить отщёлкивание.

Техника очень простая. Вдыхая, поднимаем руки ладонями на уровень глаз, скрещивая их в запястьях. Плотно прижимаем большие и средние пальцы ногтевыми фалангами. Одновременно резко выдыхаем и бросаем руки вниз – в стороны, делая щелчок пальцами. Выполняем действие 1-3 раза, по необходимости.

Уже на этом, начальном этапе, можно использовать «Пульсовую волну» в лечебных целях.

Очень многие знают, сколько неприятностей приносят различные аритмии: будь то учащенное или замедленное сердцебиение, оно доставляет ощутимые страдания.

Так вот, ритм сердца можно скорректировать , и для этого нужен небольшой инструмент, который известен всем музыкантам. Это метроном, механический или электронный – значения не имеет.

Настраиваем метроном так, чтобы он делал 1 удар в секунду (или 60 в минуту). Этот ритм считается нормальным для человека.

Устраиваетесь комфортно сидя в кресле или лёжа и измеряете свой сердечный ритм. Это можно сделать с помощью тонометра, а можно самостоятельно, вручную. Если кто-то не умеет, рассказываю как.

Прижимаем тремя пальцами лучевую артерию на запястье и, почувствовав биение пульса, включаем секундомер. Считаем, сколько ударов приходится на 10 секунд, и умножаем полученное число на 6. Вот мы и получили цифру своего сердечного ритма. Запоминаем её.

Расслабляемся и убираем ненужные мысли. Чтобы сделать это было проще, сконцентрируйтесь на чём-то определённом. Например, представьте образ сердца, заполните его цветом белого золота. Уже только это начнёт оказывать лечебное действие.

И очень важно войти в состояние «мжи» (или «межи»). Это состояние пограничное между сном и бодрствованием. В этом состоянии все мы периодически находимся, поэтому можем его вспомнить. Раннее утро, вы уже не спите, но еще не проснулись. Очень важно научиться входить в это состояние по своей воле, то есть осознанно.

Как только почувствуете, что вы уже в этом состоянии, включайте метроном. Выполняем «пульсовую волну» в ритме, задаваемом метрономом. Сливайтесь с ритмом метронома, погружайтесь в него, окрашивайте его в комфортный для вас цвет, можете даже придать ему приятный вкус и запах. Всё, на что способно ваше воображение в этом состоянии «межи».

Вы сами почувствуете, когда можно будет выходить из состояния и прекратить работу.

Опять измеряем пульс и убеждаемся, что он приведён в норму: 60 ударов в минуту.

Конечно, чтобы справиться с аритмией самостоятельно и навсегда, нужно выполнять эту практику довольно длительное время.

Понравилась статья? Поделитесь с друзьями!