Включение их в состав. Пероксисомы клетки

В результате жизнедеятельности любой клетки, в её цитоплазме могут накапливаться разнообразные соединения(органические и неорганические) Данные вещества отражающие естественный метаболизм клетки получили название включения. Включения являются мобильными структурами цитоплазмы, способные как появляться так и исчезать, чаще всего, рано или поздно включения расходуются для нужд клетки.

Классификация включений

  • 1. Трофические включения
  • 2. Секреторные включения
  • 3. Экскреторные включения
  • 4. Пигментные включения
  • 5. Витамины

Трофические включения - в цитоплазме могут быть представлены белками, жирами и углеводами. Белковые включения встречаются наиболее редко из всех трофических включений, имеют вид гранул, реже кристаллов. Могут быть обнаружены в несколько большем количестве, в таких клетках как «Женские половые клетки, клетки печени, эмбриональные клетки и опухолевые клетки, чаще всего они несут пластическую функцию, то есть строительным материалом или вакуолей

Жировые встречаются чаще, имеют вид капель или вакуолей и представляет собой высококалорийные масла, которые используются в качестве питательного материала, для клетки. Наибольшее кол-во жировых включений определяется белой и бурой жировой тканью. В клетках печени, в женских половых клетках и в клетках коры надпочечников, в виде стероидных соединений (холистерола) которые в надпочечниковых железах используются в качестве предшественника, при синтезе жирорастворимых гормонов Углеводы - являются весьма распространенными. Основным углеводным включением является гликоген, животный полисахарид, который при своём разложении (например, под действием глюкогона даёт основной энергетический субстрат-глюкозу, которая необходима для всех внутриклеточных процессов, поддерживающих жизнедеятельность клетки, больше всего включений гликогена наблюдается в скелетных мышечных волокнах, в сердечной мышечной ткани, в нервных клетках, а так же клетках печени (гепатоцитах), так же включения гликогена встречаются в женский половых клетках.

Секреторные включения в клетках представляют собой продукт, секреторной активности железистых клеток, который как правило экспортируется клеткой, то есть используется на нужды всего организма. Секреторные включения могут иметь вид гранул вакуолей, реже кристаллов. При электронной микроскопии удаётся обнаружить, что большая часть секреторных включений окружена биомембраной, что необходимо, для процессов выведения секрета и их последующей сохранности, очень много секреторных включений обнурживается в клетках поджелудочной железы в клетках паннета содержащихся в тонкой кишке, а так же в секреторных клетках гипоталамуса, чаще всего секреторные включения хранятся в цитоплазме в неактивном состоянии. Такие неактивные ферменты получают название зимогена. А гранулы с этим секретом получают название зимогенных гранул.

Экскреторные включения. В процессе жизнедеятельности любой клетки в ней накапливаются продукты обмена(шлаки) именно этими шлаками и представлены экскреторные включения. Несмотря на то,что данные включения встречаются во всех клетках, больше всего их в клетках почек. цитоплазма органоид трофический

Пигментные включения представляют собой вещества, накапливаемые в цитоплазме и имеющие свою собственную природную окраску. Пигментные включения делятся на 2 категории: Которые могут храниться в цитоплазме (меланин и липофусцин) и включения которые должны в обязательном порядке выводится из клетки, поскольку являются для неё токсичными. Самым распространённым является меланин. Включения меланина имею вид слоистых телец или гранул, которые диффузно располагаются по всей цитоплазме, больше всего данного пигмента находится в клетках кожи около сосковой области, анагенитальной области, в клетках волос, в клетках сосудистой оболочки глазного яблока, а так же в радужке. Основная функция меланина: поглощение ультрафиолетовой части солнечного спектра, обладающего мутагенной активностью. Данный пигмент так же способствует остроте света, так как поглощает избыточную часть солнечных лучей и препятствует её отражению от задней стенки глаза, тем самым делая изображение более резким и контрастным. Липофусцин представляет собой продукт обмена жировых молекул, входящих в состав остаточных телец - лизосом. С течением времени количество липофусцина в клетках увеличивается, поэтому этот пигмент получил название пигмента старения. Липофусцин может накапливаться в любых клетках, но больше его накапливается в клетках печени и нервных клетках.

Витамины. Включения витаминов, представляют собой гранулы, различного характера, которых в клетках накапливается очень мало, витамины никогда не будут вести пластическую функцию, трофической функции, энергетической функции. Витамины являются кофакторами (помощниками) для различных ферментных систем, контролирующих обмен веществ. Все витамины делят на жирорастворимые и водорастворимые. К жирорастворимым относят витамины А, Д, Е, К. К водорастворимым Ц и витамины группы Б. При недостаточном поступлении того или иного витамина развивается гиповитаминоз, крайним проявлением которого является авитаминоз, и гипо и авитоминоз -это заболевания которые влекут за собой очень серьёзные последствия, которое рано или поздно проявит себя.

Включения – непостоянные и необязательные компоненты клеток. Могут содержать разнообразные химические вещества.

Включения делятся на:

Трофические (запас питательных веществ),Трофические включения . Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

Секреторные (вещества, предназначенные для секреции),Секреторные включения . Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

Экскреторные (продукты метаболизма, предназначенные для выведения из клетки),Экскреторные включения . Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

Пигментные (пигменты).Пигментные включения . Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Понятие о жизненном цикле клетки: стадии и их морфофункциональная характеристика. Особенности жизненного цикла у различных видов клеток. Регуляция жизненного цикла: понятие, классификация факторов, регулирующих пролиферативную активность.

В жизненном цикле любой клетки различают 5 периодов: фаза роста и размножения в недифференцированном состоянии, фаза дифференцировки, фаза нормальной активности, фаза старения и терминальная фаза дезинтеграции и смерти.

Рост и размножение . Сразу же после своего «появления на свет» в момент деления материнской клетки дочерняя клетка начинает вырабатывать белки в соответствии с типом, предписанным ей генетическим кодом. Клетка растет, сохраняя при этом недифференцированный характер эмбриональной клетки - это период роста.

Дифференцировка . Возможен и другой тип развития. После начального роста и размножения клетка начинает дифференцироваться, т.е. морфологически и функционально специализироваться. Процесс дифференцировки, обусловленный одновременно действием генов и влиянием внешней среды, вначале в течение некоторого времени обратим. Его можно приостановить, воздействуя различными факторами.

Процесс дифференцировки - это развитие из однородного клеточного материала резко отличающихся друг от друга клеток и тканей различных органов. Дифференцированные клетки характеризуются своими морфологическими и особыми функциональными свойствами. Эти свойства обусловлены структурными и энзиматическими особенностями их специфических белков. Некоторые эмбриональные дифференцировки клеток и даже органов зависят от свойства клеточных мембран; свойства эти связаны со структурными и функциональными характеристиками белка. Таким образом, в основе всякой дифференцировки лежат структурные изменения белка, дифферен-цировка представляет собой процесс направленного изменения.

Гибель клетки - постепенный процесс: вначале в клетке возникают обратимые повреждения, совместимые с жизнью; затем повреждения приобретают необратимый характер, но некоторые функции клетки сохраняются, и, наконец, наступает полное прекращение всех функций.

Уровни и формы организации живого. Определение ткани. Эволюция тканей. Морфофункциональная классификация тканей по Келликеру и Лейдигу. Структурные элементы тканей. Понятие о стволовых клетках, популяциях клеток и дифферонах. Классификация тканей согласно теории дифферонного строения.

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны: молекулярный , субклеточный, клеточный, органотканевый, организменный, популяционный, видовой, биоценотический, биогеоценотический, биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней выделяются некоторые основные. Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании этих критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, организменный, популяционно-видовой, биогеоценотический.

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.
Все ткани делятся на 4 морфофункциональные группы: I. эпителиальные ткани (куда относятся и железы); II.ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани; III. мышечные ткани, IV. нервная ткань. Внутри этих групп (кроме нервной ткани) различают те или иные виды тканей. Например, мышечные ткани подразделяются, в основном, на 3 вида: скелетную, сердечную и гладкую мышечные ткани. Ещё более сложными являются группы эпителиальных и соединительных тканей. Ткани, принадлежащие к одной группе, могут иметь разное происхождение. Например, эпителиальные ткани происходят из всех трёх зародышевых листков. Таким образом, тканевая группа - это совокупность тканей, имеющих сходные морфофункциональные свойства независимо от источника их развития. В образовании ткани могут принимать участие следующие элементы: клетки, производные клеток (симпласты, синцитии), постклеточные структуры (такие, как эритроциты и тромбоциты), межклеточное вещество (волокна и матрикс). Каждая ткань отличается определённым составом таких элементов. Например, скелетная мышечная ткань - это лишь симпласты (мышечные волокна. Этот состав обуславливает специфические функции каждой ткани. Причём, выполняя эти функции, элементы тканей обычно тесно взаимодействуют между собой, образуя единое целое.
морфофункциональная классификация Келликера и Лейдига, созданная ими в середине пршлого столетия. Согласно этой классификации

различают следующие 4 группы тканей:

1.Эпителиальные или покровные ткани,объединяющиеся на основании морфологических признаков.

2.Ткани внутренней среды , включающие в себя кровь, лимфу, костную, хрящевую и собственно соединительную ткани. Все эти ткани объединяются в одну группу по двум признакам. по общности строения (все они состоят из клеток и межклеточного вещества) и происхождения (все они развиваются из мезенхимы).

3.Мышечные ткани (гладкая, поперечно-полосатая, сердечная, миоэпителиальные клетки и мионевральные элементы). Ткани этой группы обладают одной функцией – сократимостью, но происхождение и строение их разное.

4.Нервная ткань. Эта ткань представлена различными гистологическими элементами клетками и глией. Единственным общим признаком для нервных клеток и глиальных элементов является их постоянное совместное расположение, т.е. топографический признак. Нервная ткань обеспечивает интегративную функцию, т.е. обеспечивает единство организма.

Живучесть этой классификации объясняется тем, что она отражает различные связи организма с внешней средой, а также внутри самого организма.

СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ТКАНЕЙ:

Ткани состоят из клеток и межклеточного вещества. Клетки находятся во взаимодействии друг с другом и межклеточным веществом. Это обеспечивает функционирование ткани как единой системы. В состав органов входят различные ткани (одни образуют строму, другие – паренхиму). Каждая ткань имеет или имела в эмбриогенезе стволовые клетки.

СИМПЛАСТ – неклеточная многоядерная структура. Два способа образования: путем объединения клеток, между которыми исчезают клеточные границы; в результате деления ядер без цитотомии (образования перетяжки). Например скелетная мышечная ткань.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО – продукт жизнедеятельности клеток. Состоит из двух частей: аморфное (основное) вещество (гелеозоль, протеогликаны, ГАГ, гликопротеиды) и волокна (коллагеновые определяют прочность на разрыв, эластические – прочность на растяжение, ретикулярные – коллаген 3 типа)

Теории дифференного строения тканей . Согласно этой теории все ткани нашего организма состоят из одного или нескольких дифферонов. Клеточный дифферон – это совокупность клеточных форм, составляющих линию дифференцировки. Клеточный дифферон образуют клетки возрастающей степени зрелости одного гистогенетического ряда. Исходной формой линии клеточной дифференцировки (клеточного дифферона) служат стволовые клетки. Все ткани нашего организма имеют или имели в эмбриональном периоде стволовые клетки. Стволовые клетки являются малодифференцированными, т.е. они не прошли путь дифференцировки до конца.

При делении стволовой клетки она стоит перед выбором остаться стволовой клеткой, какой была родительская, или встать на путь, ведущий к полной дифференцировке. Установлено, что стволовая клетка может делиться симметрично и ассимметрично. При симметричном делении образуются из 1 стволовой клетки две новых стволовых клеток Следующие стадии гистогенетического ряда образуют субстволовые (коммитированные) клетки-предшественники, которые могут дифференцироваться только в одном направлении. Дифферон заканчивается стадией зрелых функционирующих клеток. Различают основные (полные) и неполные диффероны в составе ткани Условно в составе клеточного дифферона можно выделить начальную камбиальную часть, среднюю дифференцирующуюся часть и конечную – высоко дифференцирующуюся часть, в которых степень пролиферативной активности клеток различна.

Помимо органелл или органоидов клетка содержит непостоянные клеточные включения. Обычно содержатся в цитоплазме, но могут встречаться в митохондриях, в ядре и других органоидах.

Виды и формы

Включения - необязательные компоненты растительной или животной клетки, накапливающиеся в процессе жизнедеятельности и метаболизма. Включения не стоит путать с органеллами. В отличие от органелл включения то возникают, то исчезают в структуре клетки. Некоторые из них небольшие, едва заметные, другие превышают в размерах органеллы. Они могут иметь разную форму и различный химический состав.

По форме выделяют:

  • гранулы;
  • кристаллы;
  • зёрна;
  • капли;
  • глыбы.

Рис. 1. Формы включений.

По функциональному назначению включения подразделяются на следующие группы:

  • трофические или накопительные - запасы питательных веществ (вкрапления липидов, полисахаридов, реже - белков);
  • секреты - химические соединения в жидком виде, накапливающиеся в железистых клетках;
  • пигменты - окрашенные вещества, выполняющие определённые функции (например, гемоглобин переносит кислород, меланин - окрашивает кожу);
  • экскреты - продукты метаболического распада.

Рис. 2. Пигменты в клетке.

Все включения являются продуктами внутриклеточного обмена веществ. Часть так и остаётся в клетке «про запас», часть расходуется, часть со временем выводится из клетки.

Строение и функции

Главными включениями клетки являются жиры, белки, углеводы. Их краткое описание дано в таблице “Строение и функции клеточного включения”.

ТОП-4 статьи которые читают вместе с этой

Включения

Строение

Функции

Примеры

Мелкие капли. Находятся в цитоплазме. У млекопитающих жировые капли расположены в специальных жировых клетках. В растениях большая часть жировых капель находится в семенах

Являются основным запасом энергии, расщепление 1 г жиров высвобождает 39,1 кДж энергии

Клетки соединительной ткани

Полисахариды

Гранулы разнообразных форм и размеров. Обычно в животной клетке запасаются в форме гликогена. В растениях скапливаются зёрна крахмала

При необходимости восполняют недостаток глюкозы, являются энергетическим запасом

Клетки поперечнополосатых мышечных волокон, печени

Гранулы в форме пластинок, шариков, палочек. Встречаются реже, чем липиды и сахара, т.к. большая часть белков расходуется в процессе метаболизма

Являются строительным материалом

Яйцеклетка, клетки печени, простейшие

В растительной клетке роль включений играют вакуоли - мембранные органеллы, накапливающие питательные вещества. Вакуоли содержат водный раствор с органическими (соли) и неорганическими (углеводы, белки, кислоты и т.д.) веществами. Белки в небольшом количестве могут находиться в ядре. Липиды в виде капель накапливаются в цитоплазме.

Рис. 3. Вакуоль.

Что мы узнали?

Узнали о расположении, строении и функции клеточных включений. В цитоплазме и в некоторых органеллах клетки могут находиться жировые, углеводные, белковые включения в виде капель, зерён, гранул. Включения характерны для любых клеток, могут появляться и исчезать в процессе жизнедеятельности.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 199.

Клеточные структуры: митохондрии, пластиды, органоиды движения, включения. Ядро

Клеточные органеллы, их строение и функции

Органеллы

Строение

Функции

Митохондрии

Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты – кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК.

Универсальная органелла является дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ на (кристах).

Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2–3 выроста. Форма – округлая. Бесцветны.

Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется, и они преобразуются в хлоропласты. Образуются из пропластид.

Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин – тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты – хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК.

Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).

Хромопласты

Микроскопические органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов, принимают форму кристаллов каратинондов, типичную для данного вида растения. Окраска красная, оранжевая, желтая.

Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды?– конечные продукты обмена.

Клеточный центр

Ультрамикроскопическая органелла немембранного строения. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг другу.

Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках. Удваиваются и образуют клеточный центр.

Клеточные включения (непостоянные структуры)

Плотные в виде гранул включения, имеющие мембрану (например, вакуоли).

Органоиды движения

Реснички – многочисленные цитоплазмические выросты на поверхности мембраны.

Удаление частичек пыли (реснитчатые эпителии верхних дыхательных путей), передвижение (одноклеточные организмы).

Жгутики – единичные цитоплазматические выросты на поверхности клетки.

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы).

Ложные ножки (псевдоподии) – амебовидные выступы цитоплазмы.

Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения.

Миофибриллы – тонкие нити до 1 см. длиной и больше.

Служат для сокращения мышечных волокон, вдоль которых они расположены.

Цитоплазма, осуществляющая струйчатое и круговое движение.

Перемещение органелл клетки по отношению к источнику света (при фотосинтезе), тепла, химического раздражителя.

Схема состав и функции клеточных включений

Фагоцитоз – захват плазматической мембраной твёрдых частиц и втягивание их внутрь.

Плазматическая мембрана образует впячивание в виде тонкого канальца, в который попадает жидкость с растворёнными в ней веществами. Этот способ называют пиноцитозом .

Ядро

Все организмы, имеющие клеточное строение без оформленного ядра называются прокариотами . Все организмы, имеющие клеточное строение с ядром называются эукариотами .

Ядерные структуры, их строение и функции

Структуры

Строение

Функции

Ядерная оболочка

Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра.

Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК и субъединицы рибосом) и из цитоплазмы в ядро (белки, жир, углеводы, АТФ, вода, ионы).

Хромосомы (хроматин)

В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой обкладки. В делящихся клетках хроматиновые структуры спирализуются и образуют хромосомы. Хромосома состоит из двух хроматид, и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. У ядрышковых хромосом есть вторичная перетяжка.

Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а, следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных для данной популяции, вида. В хромосомах синтезируется ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.

Ядрышко

Шаровидное тело, напоминающее клубок нити. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается.

Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы.

Ядерный сок (кариолимфа)

Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая.

Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой.

Схема строения ядра клетки

Функции ядра клетки:

  • регуляция процессов обмена веществ в клетке;
  • хранение наследственной информации и ее воспроизводство;
  • синтез РНК;
  • сборка рибосом.

Выводы по лекции

  1. В митохондриях происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ.
  2. Важную роль играют пластиды в обеспечении процессов жизнедеятельности растительной клетки.
  3. К органоидам движения относят клеточные структуры: реснички, жгутики, миофибриллы.
  4. Все клеточные организмы делятся на прокариоты (безъядерные) и эукариоты (с ядром).
  5. Ядро представляет собой структурный и функциональный центр, координирующий ее обмен веществ, руководящий процессами самовоспроизведения и хранения наследственной информации.

Вопросы для самоконтроля

  1. Почему митохондрии образно называют "силовыми станциями" клетки?
  2. Какие структуры клетки способствуют ее движению?
  3. Что относится к клеточным включениям? Какова их роль?
  4. Каковы функции ядра в клетке?

Самостоятельная работа

Темы рефератов, докладов:

  1. Исторический очерк. "Изучение строения клетки".
  2. Выдающийся биолог Р. Гук.
  3. Выдающийся биолог А. Левенгук.
  4. Выдающиеся биологи Т. Шванн и М. Шлейден.
  5. Выдающийся биолог Р. Вирхов.

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Понравилась статья? Поделитесь с друзьями!