Металлы положение в периодической системе химических элементов. Л.п.иванова, учитель химии новинской средней школы (астраханская обл.)

Цель урока: формирование системы знаний о положение металлов в Периодической системе и их общих свойствах.

Задачи урока:

Обучающая - рассмотреть положение металлов в системе элементов Д.И. Менделеева, познакомить обучающихся с основными свойствами металлов, выяснить, чем они обусловлены, познакомить с понятием коррозия металлов

Развивающая – уметь находить в таблице ПСХЭ металлы, уметь сравнивать металлы и неметаллы, объяснять причины химических и физических свойств металлов, развивать теоретическое мышление учащихся и их умение прогнозировать свойства металлов на основе их строения.

Воспитывающая - способствовать развитию познавательного интереса учащихся к изучению химии

Тип урока: урок изучения нового материала.

Методы обучения : словесные и наглядные

Ход урока:

Хронометраж урока.

    Организационный момент (1 мин.)

    Актуализация знаний(3 мин)

    Изучение нового материала

    1.1. Положение в периодической системе. (10 мин)

    1.2. Особенности электронного строения атомов.(10 мин)

    1.3. Восстановительные свойства металлов. (10 мин)

    2.1. Металлическая связь. (5 мин)

4. Эмоциональная разгрузка 2 мин

    2.2. Физические свойства.(10 мин)

    3. Химические свойства. (17 мин)

    4. Коррозия металлов.(5 мин)

    Закрепление (15 мин)

    Задание на дом (3 мин)

    Итог урока (1мин)

    Организационный момент

(Взаимное приветствие, фиксация присутствующих).

    Актуализация знаний. В начале урока учитель акцентирует внимание учащихся на значимости новой темы, определяемой той ролью, которую металлы играют в природе и во всех сферах деятельности человека . Промышленность

Учитель читает загадку:

Я твердый, ковкий и пластичный,

Блестящий, нужный всем, практичный.

Я вам уже подсказку дал,

Так кто же я такой…? и предлагает записать отгадку в тетрадь в виде темы урока?

    Изучение нового материала

План лекции.

1. Характеристика элемента-металла.

1.2. Особенности электронного строения атомов.

1.3. Восстановительные свойства металлов.

2. Характеристика простого вещества.

2.1. Металлическая связь.

2.2. Физические свойства.

3. Химические свойства.

4. Коррозия металлов.

1.1. Положение в периодической системе.

Условная граница между элементами-металлами и элементами-неметаллами проходит по диагонали В (бор) - (кремний) - Si (мышьяк) - Те (теллур) - Аs (астат) (проследите ее в таблице Д. И. Менделеева)..

Начальные элементы образуют главную подгруппу I группы и называются щелочными металлами . Свое название они получили от названия соответствующих им гидроксидов, хорошо растворимых в воде, - щелочей.

Из элементов главных подгрупп следующих групп к металлам относят: в IV группе германий, олово, свинец(32,50,82) (первые два элемента - углерод и кремний - неметаллы), в V группе сурьма и висмут(51,83) (первые три элемента - неметаллы), в VI группе только последний элемент - полоний(84) - явно выраженный металл . В главных подгруппах VII и VIII групп все элементы - типичные неметаллы.

Что касается элементов побочных подгрупп, то все они металлы.

Атомы щелочных металлов содержат на внешнем энергетическом уровне только один электрон, который они легко отдают при химических взаимодействиях, поэтому являются сильнейшими восстановителями. Понятно, что в соответствии с ростом радиуса атома восстановительные свойства щелочных металлов усиливаются от лития к францию.

Следующие за щелочными металлами элементы, составляющие главную подгруппу II группы, также являются типичными металлами, обладающими сильной восстановительной способностью (их атомы содержат на внешнем уровне два электрона). Из этих металлов кальций, стронций, барий и радий называют щелочноземельными металлами . Такое название эти металлы получили потому, что их оксиды, которые алхимики называли «землями», при растворении в воде образуют щелочи.

К металлам относятся и элементы главной подгруппы III группы, исключая бор.

к 3 группе относятся металлы называемые подгруппой алюминия.

1.2 Особенности электронного строения металлов.

Учащиеся на основе полученных знаний формулируют сами определение «металл»

Металлы - это химические элементы, атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя, превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя, большим радиусом атомов, вследствие чего эти электроны слабо удерживаются с ядром. Атомы металлов имеют сравнительно большие размеры (радиусы), поэтому и их внешние электроны значительно удалены от ядра и слабо с ним связаны. И вторая особенность, которая присуща атомам наиболее активных металлов, - это наличие на внешнем энергетическом уровне 1-3 электронов.
Атомы металлов имеют сходство в строении внешнего электронного слоя, который образован небольшим числом электронов (в основном не больше трех).
Это утверждение можно проиллюстрировать на примерах Na, алюминия А1 и цинка Zn. Составляя схемы строения атомов, по желанию можно составлять электронные формулы и приводить примеры строения элементов больших периодов, например цинка.

В связи с тем, что электроны внешнего слоя атомов металлов слабо связаны с ядром, они могут быть «отданы» другим частицам, что и происходит при химических реакциях:

Свойство атомов металлов отдавать электроны является их характерным химическим свойством и свидетельствует о том, что металлы проявляют восстановительные свойства.

1.3 Восстановительные свойства металлов.

    Как изменяется окислительная способность элементов III периода?

(окислительные свойства в периодах усиливаются, а восстановительные – ослабевают. Причиной изменения этих свойств- увеличение количества электронов на последней орбитале.)

    Как изменяются окислительные свойства у элементов 4 группы главной подгруппы? (снизу вверх окислительные свойства усиливаются. Причиной изменения этих свойств является уменьшение радиуса атома(легче принять чем отдать)

    Исходя из положения металлов в Периодической системе какой можно сделать вывод об окислительно-восстановительных свойствах элементов- металлов?

(Металлы являются восстановителями в химических реакциях, т.к. отдают свои валентные электроны)

Учащиеся отвечают, что прочность связи валентных электронов с ядром зависит от двух факторов: величины заряда ядра и радиуса атома. .

(запись вывода в тетрадях учащихся)в периодах с увеличением заряда ядра восстановительные свойства уменьшаются.

У элементов – металлов побочных подгрупп свойства чуть-чуть другие.

Учитель предлагает сравнить активность элементов побочной подгруппы. Cu , Ag , Au активност ь элементов – металлов падает. Эта закономерность наблюдается и у элементов второй побочной подгруппы Zn , Cd , Hg .Увеличение электронов на внешнем уровне поэтому восстановительные свойства ослабевают

У элементов побочных подгрупп – это элементы 4-7 периодов 31-36, 49-54 – с увеличением порядкового элемента радиус атомов изменятся мало, а величина заряда ядра увеличивается значительно, поэтому прочность связи валентных электронов с ядром усиливается, восстановительные свойства ослабевают.

2.1. Металлическая связь.

Металлическая связь осуществляется посредством взаимного притяжения атом-ионов и относительно свободных электронов.

Рисунок 1.
Строение кристаллической решетки металлов

В металлах валентные электроны удерживаются атомами крайне слабо и способны мигрировать. Атомы, оставшиеся без внешних электронов, приобретают положительный заряд. Они образуют металлическую кристаллическую решётку.

Совокупность обобществлённых валентных электронов (электронный газ), заряженных отрицательно, удерживает положительные ионы металла в определённых точках пространства - узлах кристаллической решётки, например, металла серебро.

Внешние электроны могут свободно и хаотично перемещаться, поэтому металлы характеризуются высокой электропроводностью (особенно золото, серебро, медь, алюминий).

Химическая связь предполагает определенный вид кристаллической решетки. Металлическая химическая связь способствует образованию кристаллов с металлической кристаллической решеткой. В узлах кристаллической решетки находятся атом-ионы металлов, а между ними свободно движущиеся электроны. Металлическая связь отличается от ионной, т.к. нет анионов, хотя есть катионы. Отличается она и от ковалентной, т.к. не образуются общие электронные пары.

    Эмоциональная разгрузка

Отсутствие какого металла описал академик А. Е. Ферсман?

На улицах стоял бы ужас разрушения: ни рельсов, ни вагонов, ни паровозов, ни автомобилей не оказалось бы, даже камни мостовой превратились бы в глинистую труху, а растения начали бы чахнуть и гибнуть без этого металла. Разрушение ураганом прошло бы по всей Земле, и гибель человечества сделалась бы неминуемой. Впрочем, человек не дожил бы до этого момента, ибо лишившись трех граммов этого металла в своем теле и в крови, он бы прекратил свое существование раньше, чем развернулись бы нарисованные события (Ответ: Все люди бы погибли, лишившись железа в крови)

Назовите металл фальшивомонетчиков

Название металлу было дано испанскими конкистадорами, которые в середине XVI в. впервые познакомились в Южной Америке (на территории современной Колумбии) с новым металлом, внешне похожим на серебро. Название металла буквально означает «маленькое серебро», «серебришко».

Объясняется такое пренебрежительное название исключительной тугоплавкостью металла, который не поддавался переплавке, долгое время не находил применения и ценился вдвое ниже, чем серебро. Они использовали этот металл для изготовления фальшивых монет.

На сегодняшний день, этот металл, используемый как катализатор и в ювелирном деле, является одним из самых дорогих.

В чистом виде ее в природе не существует. Самородная платина обычно представляет собой естественный сплав с другими благородными (палладий, иридий, родий, рутений, осмий) и неблагородными (железо, медь, никель, свинец, кремний) металлами. Для ее получения самородки разогревают в котлах с "царской водкой" (смесь азотной и соляной кислоты) и затем "доводят" многочисленными химическими реакциями, нагревом и плавкой.

Таким образом, кристаллическая решетка зависит и определяется видом химической связи, но в то же время является причиной для физических свойств.

2.2. Физические свойства.

Учитель подчеркивает, что физические свойства металлов определяются именно их строением.

а) твердость – все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло

б) плотность. Металлы делятся на мягкие (5г/см³) и тяжелые (меньше 5г/см³).

в) плавкость. Металлы делятся на легкоплавкие и тугоплавкие.

г) электропроводность, теплопроводность металлов обусловлена их строением. Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

При повышении температуры амплитуда движения атомов и ионов, находящихся в узлах кристаллической решетки резко возрастает, и это мешает движению электронов, и электропроводность металлов падает.

Следует отметить, что у некоторых неметаллов, при повышении температуры электропроводность возрастает, например, у графита, при этом с повышением температуры разрушаются некоторые ковалентные связи, и число свободно перемещающихся электронов возрастает.

д) металлический блеск – электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают как стекло. Попадают на узлы кристаллической рещетки. Поэтому все металлы в кристаллическом состоянии имеют металлический блеск. Для большинства металлов в ровной степени рассеиваются все лучи видимой части спектра, поэтому они имеют серебристо-белый цвет. Только золото и медь в большой степени поглощают короткие волны и отражают длинные волны светового спектра, поэтому имеют желтый цвет. Самые блестящие металлы – ртуть, серебро, палладий. В порошке все металлы, кроме Al и Mg , теряют блеск и имеют черный или темно-серый цвет.

е) пластичность

Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

3. Химические свойства.

По своим химическим свойствам все металлы являются восстановителями, все они сравнительно легко отдают валентные электроны, переходят в положительно заряженные ионы, то есть окисляются . Восстановительную активность металла в химических реакциях, протекающих в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов(Открыл и составил Бекетов)

Чем левее стоит металл в ряду электрохимическом ряду напряжений металлов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Взаимодействие с простыми веществами

    С кислородом большинство металлов образует оксиды – амфотерные и основные:

4Li + O 2 = 2Li 2 O,

4Al + 3O 2 = 2Al 2 O 3 .

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2 .

    С галогенами металлы образуют соли галогеноводородных кислот, например,

Cu + Cl 2 = CuCl 2 .

    С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

2Na + H 2 = 2NaH.

    С серой металлы образуют сульфиды – соли сероводородной кислоты:

Zn + S = ZnS.

    С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

3Mg + N 2 = Mg 3 N 2 .

    С углеродом образуются карбиды:

4Al + 3C = Al 3 C 4 .

    С фосфором – фосфиды:

3Ca + 2P = Ca 3 P 2 .

    Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

2Na + Sb = Na 2 Sb,

3Cu + Au = Cu 3 Au.

    Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы.

Отношение металлов к кислотам.

Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 .

с HCl

Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода . Взаимодействие протекает по схеме:

Me + HCl - соль + H 2

2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

2│Al 0 – 3 e - → Al 3+ - окисление

3│2H + + 2 e - → H 2 – восстановление

«Царская водка» (ранее кислоты называли водками) представляет собой смесь одного объема азотной кислоты и трех-четырех объемов концентрированной соляной кислоты, обладающую очень высокой окислительной активностью. Такая смесь способна растворять некоторые малоактивные металлы, не взаимодействующие с азотной кислотой. Среди них и «царь металлов» - золото. Такое действие «царской водки» объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (III), или хлорида нитрозила – NOCl:

Реакции окисления золота протекают согласно следующим уравнениям:

Au + HNO3 + 4 HCl → H + NO + 2H2O

Если кислоты могут взаимодействовать с основаниями и основными оксидами, а ключевым элементом в их составе является металл, то возможно ли взаимодействие металлов с кислотами. Проверим это экспериментально.

Магний взаимодействует с кислотой при нормальных условиях, цинк - при нагревании, медь - не взаимодействует.

Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:

    Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей . Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) - и при взаимодействии с водой.

    Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.

    При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

4. Коррозия металлов – физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»).

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

В результате коррозии железо ржавеет. Этот процесс очень сложен и включает несколько стадий. Его можно описать суммарным уравнением:

4Fe + 6H 2 O (влага) + 3O 2 (воздух) = 4Fe(OH) 3

Гидроксид железа(III) очень неустойчив, быстро теряет воду и превращается в оксид железа(III). Это соединение не защищает поверхность железа от дальнейшего окисления. В результате железный предмет может быть полностью разрушен.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена. Внутренние поверхности стальных труб и резервуаров защищают дешевыми покрытиями из цемента.

Для стальных изделий используют так называемые преобразователи ржавчины, содержащие ортофосфорную кислоту (Н 3 РО 4 ) и ее соли. Они растворяют остатки оксидов и формируют плотную и прочную пленку фосфатов, которая способна на некоторое время защитить поверхность изделия. Затем металл покрывают грунтовочным слоем, который должен хорошо ложиться на поверхность и обладать защитными свойствами (обычно используют свинцовый сурик или хромат цинка). Только после этого можно наносить лак или краску.

    Закрепление (15 мин)

Учитель:

Теперь, для закрепления проведем тест.

Решите тестовые задания

1.Выберите группу элементов, в которой находятся только металлы:

А ) Al, As, P; Б ) Mg, Ca, Si; В ) K, Ca, Pb

2. Выберите группу, в которой находятся только простые вещества – неметаллы:

А ) K 2 O, SO 2 , SiO 2 ; Б ) H 2 , Cl 2 , I 2 ; В )Ca, Ba, HCl;

3. Укажите общее в строении атомов K и Li:

А) 2 электрона на последнем электронном слое;

Б) 1 электрон на последнем электронном слое;

В) одинаковое число электронных слоев.

4. Металлический кальций проявляет свойства:

А) окислителя;

Б) восстановителя;

В) окислителя или восстановителя в зависимости от условий.

5. Металлические свойства натрия слабее, чем у –

А) магния; Б) калия; В) лития.

6. К неактивным металлам относятся:

А) алюминий, медь, цинк; Б) ртуть, серебро, медь;

В) кальций, бериллий, серебро.

7. Какое физическое свойство не является общими для всех металлов:

А) электропроводность, Б) теплопроводность,

В) твердое агрегатное состояние при нормальных условиях,

Г) металлический блеск

8.Металлы при взаимодействий с неметаллами проявляют свойства:

а) окислительные;

б) восстановительные;

в) и окислительные, и восстановительные;

г) не участвуют в окислительно-восстановительных реакциях.

9.В периодической системе типичные металлы расположен

а) верхней части

б) нижней части

в) правом верхнем углу

г) левом нижнем углу

Часть В. Ответом к заданиям этой части является набор букв, которые следует записать

Установите соответствие.

С увеличением порядкового номера элемента в главной подгруппе II группы Периодической системы свойства элементов и образуемых ими веществ изменяются следующим образом:

1) число электронов на внешнем уровне

А) увеличивается

3) электроотрицательность

4) восстановительные свойства

Б) уменьшается

В) не изменяется

(Ответы: 1 –Г, 2 –А, 3 –В, 4-Б, 5-Г)

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

1. Закончить уравнения практически осуществимых реакций, назвать продукты реакции

Li+ H 2 O =

Cu + H 2 O = Cu ( OH ) 2 + H 2

Ba + H 2 O =

Mg + H 2 O =

Ca + HCl=

2 Na + 2 H 2 SO 4 ( К )= Na 2 SO 4 + SO 2 + 2H 2 O

HCl + Zn =

H 2 SO 4 ( к )+ Cu= CuSO 4 + SO 2 + H 2 O

H 2 S + Mg =MgS+H 2

HCl + Cu =

    Задание на дом: записи в тетрадях, сообщения о применении металлов.

Учитель Предлагает создать синквейн по теме.

1 строка: Существительное (одно по теме) (Металлы)

2 строка: два прилагательных

3 строка: три глагола

4 строка: четыре слова объединённых в предложение

5 строка: слово выражающее сущность данной темы.

    Итог урока

Учитель : И так, мы рассмотрели строение и физические свойства металлов, их положение в периодической системе химических элементов Д.И. Менделеева.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Положение металлов в Периодической системе Д.И. Менделеева. Особенности строения атомов, свойства.

Цель урока: 1. на основе положения металлов в ПСХЭ прийти к пониманию особенностей строения их атомов и кристаллов (металлической химической связи и кристаллической металлической решетки). 2.Обобщить и расширить знания о физических свойствах металлов и их классификаций. 3. Развивать умение анализировать, делать выводы исходя из положения металлов в периодической системе химических элементов.

МЕДЬ Иду на мелкую монету, В колоколах люблю звенеть, Мне ставят памятник за это И знают: имя мое-….

ЖЕЛЕЗО Пахать и строить - все он может, если ему уголек в том поможет…

Металлы – это группа веществ с общими свойствами.

Металлами являются элементы I – III групп главных подгрупп, и IV-VIII групп побочных подгрупп I группа II группа III группа IV группа V группа VI группа VII группа VIII группа Na Mg Al Ti V Cr Mn Fe

Из 109 элементов ПСХЭ 85 являются металлами: выделены голубым, зелёным и розовым цветом (кроме H и He)

Положение элемента в ПС отражает строение его атомов ПОЛОЖЕНИЕ ЭЛЕМЕНТА В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ СТРОЕНИЕ ЕГО АТОМОВ Порядковый номер элемента в периодической системе Заряд ядра атома Общее число электронов Номер группы Число электронов на внешнем энергетическом уровне. Высшая валентность элемента, степень окисления Номер периода Число энергетических уровней. Число подуровней на внешнем энергетическом уровне

Модель атома натрия

Электронное строение атома натрия

Задание 2. Составьте схему электронного строения атома алюминия и кальция в тетради самостоятельно по примеру с атомом натрия.

Вывод: 1. Металлы – элементы, имеющие на внешнем энергетическом уровне 1-3 электрона, реже 4-6. 2. Металлы – это химические элементы атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя, большим радиусом атомов, вследствие чего эти электроны слабо удерживаются с ядром.

Металлическая химическая связь характеризуется: - делокализацией связи, т.к. сравнительно небольшое количество электронов одновременно связывают множество ядер; - валентные электроны свободно перемещаются по всему куску металла, который в целом электронейтрален; - металлическая связь не обладает направленностью и насыщенностью.

Кристаллические решетки металлов

Видеоинформация о кристаллах металлов

Свойства металлов определяются строением их атомов. Свойство металла Характеристика свойства твердость Все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло. плотность Металлы делятся на лёгкие (плотность 5г/см) и тяжелые (плотность больше 5г/см). плавкость Металлы делятся на легкоплавкие и тугоплавкие электропроводность, теплопроводность Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток. металлический блеск Электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают как стекло пластичность. Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

Проверьте усвоение знаний на уроке тестированием 1) Электронная формула кальция. А) 1S 2 2S 2 2Р 6 3S 1 Б) 1S 2 2S 2 2 Р 6 3 S 2 В) 1S 2 2S 2 2 Р 6 3 S 2 3S 6 4S 1 Г) 1S 2 2S 2 2 Р 6 3 S 2 3 Р 6 4 S 2

Задания теста 2 и 3 2) Электронную формулу 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2 имеет атом: а) Nа б) Са в) Сu г) Zn 3) Электропроводность, металлический блеск, пластичность, плотность металлов определяются: а) массой атомов б) температурой плавления металлов в) строением атомов металлов г) наличием неспаренных электронов

Задания теста 4 и 5 4) Металлы при взаимодействии с неметаллами проявляют свойства а) окислительные; б) восстановительные; в) и окислительные, и восстановительные; г) не участвуют в окислительно-восстановительных реакциях; 5) В периодической системе типичные металлы расположены в: а) верхней части; б) нижней части; в) правом верхнем углу; г) левом нижнем углу;

Правильные ответы Номер задания Вариант правильного ответа 1 Г 2 Б 3 В 4 Б 5 Г

Предварительный просмотр:

Цель и задачи урока:

  1. На основе положения металлов в ПСХЭ подвести учащихся к пониманию особенностей строения их атомов и кристаллов (металлической химической связи и кристаллической металлической решетки), изучить общие физические свойства металлов. Повторить и обобщить знания о химической связи и металлической кристаллической решетке.
  2. Развивать умение анализировать, делать выводы о строении атомов исходя из положения металлов в ПСХЭ.
  3. Развивать умение владеть химической терминологией, чётко формулировать и высказывать свои мысли.
  4. Воспитывать самостоятельность мышления в ходе учебной деятельности.
  5. Формировать интерес к будущей профессии.

Форма урока:

комбинированный урок с применением презентации

Методы и приёмы:

Рассказ, беседа, демонстрация видео типов кристаллических решеток металлов, тест, составление схем электронного строения атомов, демонстрация коллекции образцов металлов и сплавов.

Оборудование:

  1. Таблица «Периодическая система химических элементов Д.И. Менделеева»;
  2. Презентация урока на электронном носителе.
  3. Коллекция образцов металлов и сплавов.
  4. Проектор.
  5. Карточки с таблицей «Характеристика строения атома по положению в ПСХЭ»

ХОД УРОКА

I. Организационный момент урока .

II. Постановка и оглашение темы урока, его целей и задач.

Слайд 1-2

III. Изучение нового материала.

Учитель: Человек использовал металлы с древних времён. Кратко об истории использования металлов.

Сообщение 1 учащегося. Слайд 3

В начале был век медный .

К концу каменного века человек открыл возможность использования металлов для изготовления орудий труда. Первым таким металлом была медь.

Период распространения медных орудий называют энеолитом или халколитом , что в переводе с греческого означает «медь». Медь обрабатывалась с помощью каменных орудий методом холодной ковки. Самородки меди превращались в изделия под тяжелыми ударами молота. В начале медного века из меди делали лишь мягкие орудия, украшения, предметы домашней утвари. Именно с открытием меди и других металлов стала зарождаться профессия кузнеца.

Позже появилось литьё, а потом человек стал добавлять к меди олово или сурьму, делать бронзу, более долговечную, прочную, легкоплавкую.

Сообщение 2 учащегося. Слайд 3

Бронза – сплав меди и олова. Хронологические границы бронзового века датируются в начале 3-го тысячелетия до н.э. до начала 1-го тысячелетия до н.э.

Сообщение 3 учащегося. Слайд 4

Третий и последний период первобытной эпохи характеризуется распространением железной металлургии и железных орудий и знаменует собой железный век. В современном значении этот термин был введен в употребление в середине IХ века датским археологом К. Ю. Томсоном и вскоре распространился в литературе наряду с терминами «каменный век» и « бронзовый век».

В отличие от других металлов железо, кроме метеоритного, почти не встречается в чистом виде. Ученые предполагают, что первое железо, попавшее в руки человека, было метеоритного происхождения, и не зря железо именуется « небесным камнем». Самый крупный метеорит нашли в Африке, он весил около шестидесяти тонн. А во льдах Гренландии нашли железный метеорит весом тридцать три тонны.

И настоящее время продолжается железный век. Ведь в настоящее время железные сплавы составляют почти 90 % всего металлов и металлических сплавов.

Учитель.

Золото и серебро – благородные металлы в настоящее время служат для изготовления ювелирных украшений, а также деталей в электронике, авиакосмической промышленности, в судостроении. Где в судоходстве могут применяться эти металлы? Исключительное значение металлов для развития общества обусловлено, конечно, их уникальными свойствами. Назовите эти свойства.

Продемонстрировать учащимся коллекцию образцов металлов.

Учащиеся называют такие свойства металлов как электропроводность и теплопроводность, характерный металлический блеск, пластичность, твердость (кроме ртути) и др.

Учитель задает учащимся ключевой вопрос: а чем же обусловлены эти свойства?

Ожидаемый ответ: свойства веществ обусловлены строением молекул и атомов этих веществ.

Слайд 5. Итак, металлы – группа веществ с общими свойствами.

Демонстрация презентации.

Учитель: Металлами являются элементы 1-3 групп главных подгрупп, и элементы 4-8 групп побочных подгрупп.

Слайд 6. Задание 1 . Самостоятельно, используя ПСХЭ, в тетради допишите представителей групп, являющиеся металлами.

VIII

Заслушивание ответов учащихся выборочно.

Учитель: металлами будут элементы, размещенные в левом нижнем углу ПСХЭ.

Учитель подчеркивает, что в ПСХЭ металлами будут все элементы, расположенные ниже диагонали В - Аt, даже те, у которых на внешнем слое 4 электрона (Gе, Sn, Рb), 5 электронов (Sb, Вi), 6 электронов (Ро), так как они отличаются большим радиусом.

Таким образом, из 109 элементов ПСХЭ 85 являются металлами. Слайд № 7

Учитель: положение элемента в ПСХЭ отражает строение атома элемента. С помощью таблиц, которые вы получили в начале урока, охарактеризуем строение атома натрия по его положению в ПСХЭ.
Демонстрация слайда 8.

Что представляет собой атом натрия? Посмотрите на приближенную модель атома натрия, в которой видны ядро и электроны, движущиеся по орбитам.

Демонстрация Слайда 9. Модель атома натрия.

Напомню вам, как составляется схема электронного строения атома элемента.

Демонстрация слайда 10. У вас должна получиться следующая схема электронного строения атома натрия.

Слайд 11 . Задание 2. Составьте схему электронного строения атома кальция и алюминия в тетради самостоятельно по примеру с атомом натрия.

Учитель проверяет работу в тетради.

Какой вывод можно сделать об электронном строении атомов металлов?

На внешнем энергетическом уровне 1-3 электрона. Мы помним, что вступая в химические соединения, атомы стремятся восстановить полную 8-электронный оболочку внешнего энергетического уровня. Для этого атомы металлов легко отдают 1-3 электрона с внешнего уровня, превращаясь в положительно-заряженные ионы. При этом проявляют восстановительные свойства.

Демонстрация слайда 12. Металлы – это химические элементы, атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя, превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя, большим радиусом атомов, вследствие чего эти электроны слабо удерживаются с ядром.

Рассмотрим простые вещества – металлы.

Демонстрация слайда 13.

Сначала обобщим сведения о типе химической связи, образуемой атомами металлов и строении кристаллической решетки

  1. сравнительно небольшое количество электронов одновременно связывают множество ядер, связь делокализована;
  2. валентные электроны свободно перемещаются по всему куску металла, который в целом электронейтрален;
  3. металлическая связь не обладает направленностью и насыщенностью.

Демонстрация

Слайд 14 « Типы кристаллических решёток металлов »

Слайд 15 Видео кристаллической решетки металлов.

Учащиеся делают вывод, что в соответствие именно с таким строением металлы характеризуются общими физическими свойствами.

Учитель подчеркивает, что физические свойства металлов определяются именно их строением.

Слайд 16 Свойства металлов определяются строением их атомов

а) твердость – все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло (демонстрация).

б) плотность - металлы делятся на лёгкие (5г/см) и тяжелые (больше 5г/см) (демонстрация).

в) плавкость - металлы делятся на легкоплавкие и тугоплавкие (демонстрация).

г) электропроводность, теплопроводность металлов обусловлена их строением. Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

При повышении температуры амплитуда движения атомов и ионов, находящихся в узлах кристаллической решетки резко возрастает, и это мешает движению электронов, и электропроводность металлов падает.

Следует отметить, что у некоторых неметаллов, при повышении температуры электропроводность возрастает, например, у графита, при этом с повышением температуры разрушаются некоторые ковалентные связи, и число свободно перемещающихся электронов возрастает.

д) металлический блеск – электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают, как стекло.

Поэтому все металлы в кристаллическом состоянии имеют металлический блеск. Для большинства металлов в равной степени рассеиваются все лучи видимой части спектра, поэтому они имеют серебристо – белый цвет. Только золото и медь в большой степени поглощают короткие волны и отражают длинные волны светового спектра, поэтому имеют желтый свет. Самые блестящие металлы – ртуть, серебро, палладий. В порошке все металлы, кроме АI и Мg, теряют блеск и имеют черный или темно-серый цвет.

е) пластичность . Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

IV. Закрепление изученного материала.

Учитель: мы рассмотрели строение и физические свойства металлов, их положение в периодической системе химических элементов Д.И. Менделеева. Теперь для закрепления предлагаем выполнить тест.

Слайды 15-16-17.

1) Электронная формула кальция.

  1. а) 1S 2 2S 2 2Р 6 3S 1
  2. б) 1S 2 2S 2 2Р 6 3S 2
  3. в) 1S 2 2S 2 2Р 6 3S 2 3S 6 4S 1
  4. г) 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2

2) Электронную формулу 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2 имеет атом:

  1. а) Nа
  2. б) Са
  3. в) Сu
  4. г) Zn

3) Электропроводность, металлический блеск, пластичность, плотность металлов определяются:

  1. а) массой металла
  2. б) температурой плавления металлов
  3. в) строением атомов металлов
  4. г) наличием неспареных электронов

4) Металлы при взаимодействии с неметаллами проявляют свойства

  1. а) окислительные;
  2. б) восстановительные;
  3. в) и окислительные, и восстановительные;
  4. г) не участвуют в окислительно-восстановительных реакциях;

5) В периодической системе типичные металлы расположены в:

  1. а) верхней части;
  2. VI. Домашнее задание.

    Строение атомов металлов, их физические свойства


    Классификации:

    Все неорганические соединения делятся на две большие группы:

      Простые вещества - состоят из атомов одного элемента;

      Сложные вещества - состоят из атомов двух или более элементов.

    Простые вещества

    • неметаллы

      амфотерные простые вещества

      благородные газы

    Сложные вещества по химическим свойствам делятся на:

      осно́вные оксиды

      кислотные оксиды

      амфотерные оксиды

      двойные оксиды

      несолеобразующие оксиды

      Гидроксиды;

      основания

    • амфотерные гидроксиды

      средние соли

      кислые соли

      осно́вные соли

      двойные и/или комплексные соли

    бинарные соединения:

      бескислородные кислоты

      бескислородные соли

      прочие бинарные соединения

    Неорганические вещества, содержащие углерод:

    Данные вещества традиционно относятся к области неорганической химии:

      Карбонаты

    • Оксиды углерода

      • Неорганические тиоцианаты (роданиды)

        Селеноцианаты

    • Карбонилы металлов

    Металлы - группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами , такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

    Характерные свойства металлов

      Металлический блеск

      Хорошая электропроводность

      Возможность лёгкой механической

      Высокая плотность

      Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)

      Большая теплопроводность

    В реакциях чаще всего являются восстановителями окислительно-восстановительных реакциях в водных растворах.

    Неметаллы - химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы.

    Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

    Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

    Вопрос 25:

    Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов - последовательность, в которой металлы расположены в порядке увеличения ихстандартных электрохимических потенциалов, отвечающих полуреакции восстановления катиона металла

    Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H →Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

    Ряд напряжений характеризует сравнительную активность металлов в

    Соли взаимодействуют с металлами - более активные металлы, расположенные левее в электрохимическом ряду напряжений**, вытесняют из солей менее активные металлы. Например, железо вытесняет медь из раствора хлорида меди (II): Fe + CuCl 2 = FeCl 2 + Cu↓

    Вопрос 28: Металлы, их положение в периодической системе химических элементов д.И. Менделеева, строение их атомов, металлические связи. Общие химические свойства металлов.

    Положение металлов в периодической системе.

    Все химические элементы принято делить на металлы и неметаллы. Большинство элементов (более 85 из 109 известных) - это металлы.

    К металлам относятся s–элементы (элементы IA и IIA групп за исключением водорода и гелия); некоторые p–элементы (Al, Sn, Pb и другие); все d–элементы (элементы побочных подгрупп); все f–элементы (лантаноиды и актиноиды).

    Так как металлические свойства элементов с увеличением заряда ядра их атомов в периодах ослабевают, а в главных подгруппах усиливаются, то наиболее активные металлы сосредоточены в левом нижнем углу периодической системы элементов.

    Строение металлов .

    Отличительные особенности в строении атомов металлов - их большие по сравнению с неметаллами размеры (радиус) и небольшое число электронов на внешнем энергетическом уровне (как правило, 1-2 электрона, реже 3 или 4). Этим объясняется слабая связь внешних (валентных) электронов с ядром и способность атомов металлов легко отдавать эти электроны, превращаясь в положительно заряженные ионы.

    Этот процесс обратим, катионы металлов могут вновь притягивать к себе электроны (не только «свои», но и «чужие», то есть «потерянные» другими атомами). Иными словами, электроны свободно перемещаются в объеме металла, являются общими, «коллективными», называемыми также «электронным газом». Эти электроны и обеспечивают химическую связь металлов. В отличие от ковалентной связи (чаще всего образуемой парой электронов между двумя соседними атомами), металлическая связь делокализована (многоцентровая).

    Металлическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.

    Металлическая связь бывает не только в чистых металах но также характерна для смесей разных металов, сплавов в разных агрегатных состояниях. Металлическая связь имеет важное значение и обуславливает основные свойства металлов - электропроводность – беспорядочное движение електронов в объеме металла. Но при небольшой разности потенциалов, чтобы электроны двигались упорядоченно. Металами с лучшей проводимостью являются Ag, Cu, Au, Al. - пластичность Связи между слоями металла не очень значительны, это позволяет перемещать слои под нагрузкой (деформировать металл не ломая его). Наилучше деформирующиеся металы (мягкие)Au, Ag, Cu. - металлический блеск Электронный газ отражает почти все световые лучи. Вот почему чистые металлы так сильно блестят и чаще всего имеют сенрый или белый цвет. Металы являющиеся наилучшими отражателями Ag, Cu, Al, Pd, H

    Сильные восстановители: Me 0 – nē ® Me n+

    Положение металлов в периодической системе. Физические свойства

    В периодической системе Д. И. Менделеева из 110 элементов 87 являются металлами. Они находятся в I, II, III группах, в побочных подгруппах всех групп. Кроме того, металлами являют­ся наиболее тяжелые элементы IV, V, VI и VII групп. Однако многие металлы обладают амфотерными свойствами и иногда могут вести себя как неметаллы. Особенностью строения атомов металлов является небольшое число электронов во внешнем энер­гетическом уровне, не превышающее трех. Атомы металлов имеют, как правило, большие атомные радиусы. В периодах наи­большие атомные радиусы у щелочных металлов. Они наиболее химически активны, т.е. атомы металлов легко отдают электроны и являются хорошими восстановителями. Лучшие восстановите­ли - металлы I и II групп главных подгрупп. В соединениях металлы всегда проявляют положительную степень окисления, обычно от +1 до +4. В соединениях с неметаллами типичные металлы образуют химическую связь ионного характера. В виде простого вещества атомы металлов связаны между собой так на­зываемой металлической связью.

    Металлическая связь - особый вид связи, присущий исклю­чительно металлам. Сущность ее в том, что от атомов металла постоянно отрываются электроны, которые перемещаются по всей массе куска металла.

    Атомы металла, лишенные электронов, превращаются в по­ложительные ионы, которые снова притягивают к себе движу­щиеся электроны. Одновременно другие атомы металла отдают электроны. Таким образом, внутри куска металла постоянно цир­кулирует так называемый электронный газ, который прочно свя­зывает между собой все атомы металла. Электроны оказываются как бы обобществленными всеми атомами металла. Такой особый тип химической связи между атомами металлов обуславливает как физические, так и химические свойства металлов.

    Металлы обладают рядом сходных физических свойств, отли­чающих их от неметаллов. Чем больше валентных электронов имеет металл, тем прочнее кристаллическая решетка, тем проч­нее и тверже металл, тем выше его температура плавления и кипения и т.д.

    Все металлы обладают более или менее ярко выраженным блеском, который принято называть металлическим, и непро­зрачностью, что связано с взаимодействием свободных электро­нов с падающими на металл квантами света. Металлический блеск характерен для куска металла в целом. В порошке металлы темного цвета, за исключением серебристо-белых магния и алю­миния. Алюминиевая пыль используется для изготовления крас­ки «под серебро». Многие металлы обладают жирным или стек­лянным блеском.

    Цвет металлов довольно однообразен: он либо серебристо-белый (алюминий, серебро, никель), либо серебристо-серый (же­лезо, свинец). Только золото желтого цвета, а медь - красного. По технической классификации металлы делятся условно на чер­ные и цветные. К черным относятся железо и его сплавы. Все остальные металлы называются цветными.

    Все металлы, за исключением ртути, - твердые вещества с кристаллической структурой, поэтому температуры плавления их выше нуля, только температура плавления ртути - З9°C. Наи­более тугоплавким металлом является вольфрам (3380°С). Метал­лы, плавящиеся при температуре выше 1000°С, называют туго­плавкими, ниже - легкоплавкими.

    Металлы обладают различной твердостью. Самый твердый металл - хром (режет стекло), а самые мягкие - калий, рубидий, цезий. Они легко режутся ножом.

    Металлы более или менее пластичны (обладают ковкостью). Наиболее ковким металлом является золото. Из него можно вы­ковать фольгу толщиной 0,0001 мм - в 500 раз тоньше человечес­кого волоса. Однако не обладают пластичностью Mn и Bi - это хрупкие металлы.

    Пластичностью называют способность к сильной деформации без нарушения механической прочности. При воздействии, вызы­вающем смещение частиц тела с ионной или атомной решеткой, происходит разрыв направленных связей, и тело разрушается. У металлов же связи образуются за счет электронного газа. Они не имеют направленности. Поэтому сохраняется целостность куска металла при изменении формы. Пластичность металлов исполь­зуется при их прокате.

    По плотности металлы разделяются на тяжелые и легкие. Тяжелыми считаются те, плотность которых больше 5 г/см. Самым тяжелым металлом является осмий (22,61 г/см). Наибо­лее легкие металлы - литий, натрий, калий (плотность меньше единицы). Плотность металла тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Широкое применение в промышленности получили легкие металлы - маг­ний и алюминий.

    Металлы характеризуются высокой электро- и теплопровод­ностью. Наиболее электро- и теплопроводно серебро, на втором месте стоит алюминий. Металлы с высокой электропроводностью имеют и высокую теплопроводность. Теплопроводность обуслав­ливается высокой подвижностью свободных электронов и колеба­тельным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе тела. Хорошая электропро­водность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разницы по­тенциалов приобретают направленное движение от отрицатель­ного полюса к положительному.

    Металлы проявляют магнитные свойства. Хорошо намагни­чиваются железо, кобальт, никель и их сплавы. Такие металлы и сплавы называются ферромагнитными.

Понравилась статья? Поделитесь с друзьями!