Уран элемент. Свойства, добыча, применение и цена урана

Уран представляет собой радиоактивный металл. В природе уран состоит из трех изотопов: уран-238, уран-235 и уран-234. Наивысший уровень стабильности фиксируется у урана-238.

Таблица 1. Таблица нуклидов
Характеристика Значение
Общие сведения
Название, символ Уран-238, 238U
Альтернативные названия ура́н оди́н, UI
Нейтронов 146
Протонов 92
Свойства нуклида
Атомная масса 238,0507882(20) а. е. м.
Избыток массы 47 308,9(19) кэВ
Удельная энергия связи (на нуклон) 7 570,120(8) кэВ
Изотопная распространённость 99,2745(106) %
Период полураспада 4,468(3)·109 лет
Продукты распада 234Th, 238Pu
Родительские изотопы 238Pa (β−)
242Pu (α)
Спин и чётность ядра 0+
Канал распада Энергия распада
α-распад 4,2697(29) МэВ
SF
ββ 1,1442(12) МэВ

Радиоактивный распад урана

Радиоакти́вным распа́дом называют процесс внезапного изменения состава или внутреннего строения атомных ядер, которые отличаются нестабильностью. При этом испускаются элементарные частицы, гамма-кванты и/или ядерные фрагменты. Радиоактивные вещества содержат радиоактивное ядро. Получившееся вследствие радиоактивного распада дочернее ядро может тоже стать радиоактивным и спустя определенное время подвергается распаду. Этот процесс происходит до того момента, пока не образуется стабильное ядро, лишенное радиоактивности. Э. Резерфорд методом эксперимента в 1899 доказал, что урановые соли испускают три вида лучей:

  • α-лучи - поток положительно заряженных частиц
  • β-лучи - поток отрицательно заряженных частиц
  • γ-лучи - не создают отклонений в магнитном поле.
Таблица 2. Радиоактивный распад урана
Вид излучения Нуклид Период полураспада
Ο Уран - 238 U 4,47 млрд. лет
α ↓
Ο Торий - 234 Th 24.1 суток
β ↓
Ο Протактиний - 234 Pa 1.17 минут
β ↓
Ο Уран - 234 U 245000 лет
α ↓
Ο Торий - 230 Th 8000 лет
α ↓
Ο Радий - 226 Ra 1600 лет
α ↓
Ο Полоний - 218 Po 3,05 минут
α ↓
Ο Свинец - 214 Pb 26,8 минут
β ↓
Ο Висмут - 214 Bi 19,7 минут
β ↓
Ο Полоний - 214 Po 0,000161 секунд
α ↓
Ο Свинец - 210 Pb 22,3 лет
β ↓
Ο Висмут - 210 Bi 5,01 суток
β ↓
Ο Полоний - 210 Po 138,4 суток
α ↓
Ο Свинец - 206 Pb стабильный

Радиоактивность урана

Естественная радиоактивность - вот что отличает радиоактивный уран от прочих элементов. Атомы урана не зависимо ни от каких факторов и условий постепенно изменяются. При этом испускаются невидимые лучи. После трансформаций, которые происходят с атомами урана, получается иной радиоактивный элемент и процесс повторяется. Он будет повторять столько раз, сколько необходимо, чтобы получился не радиоактивный элемент. К примеру, некоторые цепочки превращений насчитывают до 14 стадий. При этом промежуточным элементом является радий, а последняя стадия - образование свинца. Этот металл не является радиоактивным элементом, поэтому ряд превращений прерывается. Однако для полного превращения урана в свинец необходимо несколько миллиардов лет.
Радиоактивная руда урана часто становится причиной отравлений на предприятиях, занимающихся добычей и переработкой уранового сырья. В человеческом организме уран - общеклеточный яд. Он поражает главным образом почки, но встречаются и поражения печени и желудочно-кишечного тракта.
Уран не имеет полностью стабильных изотопов. Наибольший период жизни отмечается у урана-238. Полу распад урана-238 происходит на протяжении 4,4 млрд лет. Чуть меньше одного миллиарда лет идет полу распад урана-235 — 0,7 млрд лет. Уран-238 занимает свыше 99% всего объема природного урана. Вследствие его колоссального периода полураспада радиоактивность этого металла не высокая, к примеру, альфа-частицы не могут проникнуть через ороговевший слой кожи человека. После ряда проведенных исследований ученые выяснили, что главным источником радиации является не сам уран, а образуемый им газ радон, а также продукты его распада, попадающие в человеческий организм во время дыхания.

В последние несколько все большей актуальности набирает тема ядерной энергетики. Для производства атомной энергии принято использовать такой материал, как уран. Он представляет собой химический элемент, относящийся к семейству актинидов.

Химическая активность этого элемента обуславливает тот факт, что он не содержится в свободном виде. Для его производства используются минеральные образования под названием урановые руды. В них концентрируется такое количество топлива, которое позволяет считать добычу этого химического элемента экономически рациональной и выгодной. На данный момент в недрах нашей планеты содержание этого металла превышает запасы золота в 1000 раз (см. ). В целом залежи данного химического элемента в грунте, водной среде и горной породе оцениваются в более чем 5 миллионов тонн .

В свободной состоянии уран представляет собой серо-белый металл, которому свойственно 3 аллотропических модификации: ромбическая кристаллическая, тетрагональная и объемно центрированная кубическая решетки . Температура кипения этого химического элемента составляет 4200 °C .

Уран является химическим активным материалом. На воздухе этот элемент медленно окисляется, легко растворяется в кислотах, реагирует с водой, но при этом не взаимодействует с щелочами.

Урановые руды в России принято классифицировать по различным признакам. Чаще всего они различаются условиями образования. Так, существуют эндогенные, экзогенные и метаморфогенные руды . В первом случае они представляют собой минеральные образования, сформировавшиеся под воздействием высоких температур, влажности и пегматитовых расплавов. Экзогенные урановые минеральные образования возникают в поверхностных условиях. Они могут формироваться непосредственно на поверхности земли. Это происходит из-за циркуляции подземных вод и накопления осадков. Метаморфогенные минеральные образования появляются, как результат перераспределения первично разнесенного урана.

В соответствии с уровнем содержания урана, эти природные образования могут быть:

  • супербогатыми (свыше 0,3%);
  • богатыми (от 0,1 до 0,3%);
  • рядовыми (от 0,05 до 0,1%);
  • убогими (от 0,03 до 0,05%);
  • забалансовыми (от 0,01 до 0,03%).

Современное применение урана

Сегодня уран чаще всего используется в качестве топлива для ракетных двигателей и ядерных реакторов. Учитывая свойства этого материала, он также предназначен для повышения мощности ядерного орудия. Этот химический элемент также нашел свое применение в живописи. Его активно применяют в качестве желтого, зеленого, бурого и черного пигментов. Уран также используется для производства сердечников для бронебойных снарядов.

Добыча урановой руды в России: что для этого необходимо?

Добыча радиоактивных руд осуществляется тремя основными технологиями. Если залежи руды сконцентрированы максимально близко к поверхности земли, то для их добычи принято использовать открытую технологию. Она предусматривает использование бульдозеров и экскаваторов, которые роют ямы большого размера и грузят полученные полезные ископаемые в самосвалы. Далее она отправляется в перерабатывающий комплекс.

При глубоком залегании этого минерального образования принято использовать подземную технологию добычи, предусматривающую создание шахты глубиной до 2-х километров. Третья технология существенно отличается от предыдущих. Подземное выщелачивание для разработки месторождений урана предполагает бурение скважин, через которые в залежи закачивается серная кислота. Далее осуществляется бурение еще одной скважины, которая необходима для выкачивания полученного раствора на поверхность земли. Затем он проходит процесс сорбции, позволяющий собрать соли этого металла на специальной смоле. Последний этап технологии СПВ – циклическая обработка смолы серной кислотой. Благодаря такой технологии концентрация этого металла становится максимальной.

Месторождения урановых руд в России

Россия считается одним из мировых лидеров по добыче урановых руд. На протяжении последних нескольких десятков лет Россия стабильно входит в топ-7 стран-лидеров по этому показателю.

Наиболее крупными месторождениями этих природных минеральных образований являются:

Крупнейшие месторождения по добыче урана в мире – страны лидеры

Мировым лидером по добыче урана считается Австралия. В этом государстве сконцентрировано более 30% всех мировых запасов. Наиболее крупными австралийскими месторождениями являются Олимпик Дам, Биверли, Рейнджер и Хонемун.

Главным конкурентом Австралии считается Казахстан, на территории которого содержится практически 12% мировых запасов топлива. На территории Канады и ЮАР сконцентрировано по 11% мировых запасов урана, в Намибия – 8%, Бразилии – 7%. Россия замыкает семерку лидеров с 5%. В список лидеров также входят такие страны, как Намибия, Украина и Китай.

Крупнейшими мировыми урановыми месторождениями являются:

Месторождение Страна Начало обработки
Олимпик-Дэм Австралия 1988
Россинг Намибия 1976
МакАртур-Ривер Канада 1999
Инкай Казахстан 2007
Доминион ЮАР 2007
Рейнджер Австралия 1980
Харасан Казахстан 2008

Запасы и объемы добычи урановой руды в России

Разведанные запасы урана в нашей стране оцениваются в более чем 400 тысяч тонн. При этом показатель прогнозируемых ресурсов составляет более 830 тысяч тонн. По состоянию на 2017 год в России действует 16 урановых месторождений. Причем 15 из них сосредоточены в Забайкалье. Главным месторождением урановой руды считается Стрельцовское рудное поле. В большинстве отечественных месторождениях добыча осуществляется шахтным способом.

  • Уран был открыт еще в XVIII веке. В 1789 году немецкий ученый Мартин Клапрот сумел произвести из руды металлоподобный уран. Что интересно, этот ученый также является первооткрывателем титана и циркония.
  • Соединения урана активно используют в сфере фотодела. Этот элемент применяется для окрашивания позитивов и усиления негативов.
  • Главным отличием урана от других химических элементов является естественная радиоактивность. Атомы урана имеют свойство самостоятельно изменяться с течением времени. При этом они испускают лучи, невидимые глазу человека. Эти лучи делятся на 3 вида – гамма-, бета- альфа-излучения (см. ).

Ядерные технологии в значительной степени основаны на использовании методов радиохимии, которые в свою очередь базируются на ядерно-физических, физических, химических и токсических свойствах ра- диоактиных элементов.

В данной главе мы ограничимся кратким описанием свойств основных делящихся изотопов - урана и плутония.

Уран

Уран (uranium ) U - элемент группы актинидов, 7-0Й период периодической системы, Z=92, атомная масса 238,029; самый тяжёлый из встречающихся в природе.

Известно 25 изотопов урана, все они радиоактивны. Самый лёгкий 217U (Tj/ 2 =26 мс), самый тяжелый 2 4 2 U (7 T J / 2 =i6,8 мин). Имеется 6 ядерных изомеров. В природном уране три радиоактивных изотопа: 2 з 8 и (99, 2 739%, Ti/ 2 =4,47109 л), 2 35U (0.7205%, Г,/2=7,04-109 лет) и 2 34U (0.0056%, Ti/ 2=2,48-юз л). Удельная радиоактивность природного урана 2,48104 Бк, разделяется практически пополам между 2 34U и 288 U; 2 35U вносит малый вклад (удельная активность изотопа 2 ззи в природном уране в 21 раз меньше активности 2 3 8 U). Поперечное сечение захвата тепловых нейтронов 46, 98 и 2,7 барн для 2 ззи, 2 35U и 2 3 8 U, соответственно; сечение деления 527 и 584 барн для 2 ззи и 2 з 8 и, соответственно; природной смеси изотопов (0,7% 235U) 4,2 барн.

Табл. 1. Ядерно-физические свойства 2 з9Ри и 2 35Ц.

Табл. 2. Захват нейтронов 2 35Ц и 2 з 8 Ц.

Шесть изотопов урана способны к спонтанному делению: 282 U, 2 ззи, 234U, 235U, 2 з 6 и и 2 з 8 и. Природные изотопы 2 ззи и 2 35U делятся под действием как тепловых, так и быстрых нейтронов, а ядра 2 з 8 и способны к делению только при захвате нейтронов с энергией более 1,1 МэВ. При захвате нейтронов с меньшей энергией ядра 288 U превращаются сначала в ядра 2 -i9U, которые далее испытывают p-распад и переходят сначала в 2 -"*9Np, а затем - в 2 39Pu. Эффективные сечения захвата тепловых нейтронов ядер 2 34U, 2 35U и 2 з 8 и равны 98, 683 и 2,7-барн соответственно. Полное деление 2 35U приводит к «тепловому энергетическому эквиваленту» 2-107 кВтч/кг. В качестве ядерного топлива используют изотопы 2 35U и 2 ззи, способные поддерживать цепную реакцию деления.

В атомных реакторах нарабатываются п искусственных изотопов урана с массовыми числами 227-^240, из которых самый долгоживущий - 233U (7V 2 =i,62*io 5 лет); он получается при нейтронном облучении тория. В сверхмощных нейтронных потоках термоядерного взрыва рождаются изотопы урана с массовыми числами 239^257.

Уран-232 - техногенный нуклид, а-излучатель, Т х / 2=68,9 лет, материнские изотопы 2 з 6 Ри(а), 23 2 Np(p*) и 23 2 Ра(р), дочерний нуклид 228 Th. Интенсивность спонтанного деления 0,47 дел./с кг.

Уран-232 образуется в результате следующих распадов:

Р + -распад нуклида *3 a Np (Ti/ 2 =14,7 мин):

В ядерной промышленности 2 3 2 U нарабатывается как побочный продукт при синтезе делящегося (оружейного) нуклида 2 ззи в ториевом топливном цикле. При облучении 2 3 2 Th нейтронами происходит основная реакция:

и побочная двухстадийная реакция:

Наработка 232 U из тория идёт только на быстрых нейтронах „>6 МэВ). Если в исходном веществе находится 2 з°ТЬ, то образование 2 3 2 U дополняется реакцией: 2 з°ТЬ+и-> 2 3‘ТЬ. Эта реакция идёт на тепловых нейтронах. Генерация 2 3 2 U по ряду причин нежелательна. Её подавляют путём использования тория с минимальной концентрацией 2 з°ТЬ.

Распад 2 з 2 и происходит по следующим направлениям:

А-распад в 228 Th (вероятность юо%, энергия распада 5,414 МэВ):

энергия испускаемых а-частиц 5,263 МэВ (в 31,6% случаев) и 5,320 МэВ (в 68,2% случаев).

  • - спонтанное деление (вероятность менее мо~ 12 %);
  • - кластерный распад с образованием нуклида 28 Mg (вероятность распада менее 5*10" 12 %):

Кластерный распад с образованием нуклида 2

Уран-232 является родоначальником длинной цепочки распада, в которую входят нуклиды - излучатели жёстких у-квантов:

^U-(3,64 дн, a,y)-> 220 Rn-> (55,6 с, а)-> 21б Ро->(0,155 с, а)-> 212 РЬ->(10,64 ч, р, y)-> 212 Bi ->(60,6 м, р, у)-> 212 Ро а, у)->208x1, 212 Ро->(3"Ю‘ 7 с, а)-> 2о8 РЬ (стаб), 2о8 Т1->(3,06 м, р, у-> 2о8 РЬ.

Накопление 2 3 2 U неизбежно при производстве 2 ззи в ториевом энергетическом цикле. Интенсивное у-излучение, возникающее при распаде 2 3 2 U сдерживает развитие ториевой энергетики. Необычным является то, что чётный изотоп 2 з 2 11 имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн), а также высокое сечение захвата нейтронов - 73 барна. 2 3 2 U применяется в методе радиоактивных индикаторов в химических исследованиях.

2 з 2 и является родоначальником длинной цепочки распада (по схеме 2 з 2 ТЬ), в которую входят нуклиды-излучатели жёстких у-квантов. Накопление 2 3 2 U неизбежно при производстве 2 ззи в ториевом энергетическом цикле. Интенсивное у-излучение, возникающее при распаде 232 U сдерживает развитие ториевой энергетики. Необычным является то, что чётный изотоп 2 3 2 U имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн), а также высокое сечение захвата нейтронов - 73 барна. 2 3 2 U часто применяется в методе радиоактивных индикаторов в химических и физических исследованиях.

Уран-233 - техногенный радионуклид, а-излучатель (энергии 4,824 (82,7%) и 4,783 МэВ (14,9%),), Tvi= 1,585105 лет, материнские нуклиды 2 37Pu(a)-? 2 33Np(p +)-> 2 ззРа(р), дочерний нуклид 22 9Th. 2 ззи получается в атомных реакторах из тория: 2 з 2 ТЬ захватывает нейтрон и превращается в 2 ззТЬ, который распадается на 2 ззРа, а затем в 2 ззи. Ядра 2 ззи (нечётный изотоп) способны как к спонтанному делению, так и к делению под действием нейтронов любых энергий, что делает его пригодным к производству как атомного оружия, так и реакторного топлива. Эффективное сечение деления 533 барн, сечение захвата - 52 барн, выход нейтронов: на один акт деления - 2,54, на один поглощенный нейтрон - 2,31. Критическая масса 2 ззи в три раза меньше критической массы 2 35U (-16 кг). Интенсивность спонтанного деления 720 дел./с кг.

Уран-233 образуется в результате следующих распадов:

- (3 + -распад нуклида 2 33Np (7^=36,2 мин):

В промышленных масштабах 2 ззи получают из 2 32Th, облучением нейтронами:

При поглощении нейтрона, ядро 2 ззи обычно делится, но изредка захватывает нейтрон, переходя в 2 34U. Хотя 2 ззи, поглотив нейтрон, обычно делится, всё же он иногда сохраняет нейтрон, переходя в 2 34U. Наработку 2 ззи проводят как в быстрых, так и в тепловых реакторах.

С оружейной точки зрения 2 ззи, сравним с 2 39Ри: его радиоактивность - 1/7 от активности 2 39Pu (Ti/ 2 =159200 л против 24100 л у Ри), критическая масса 2 ззи на 6о% выше, чем у ^Ри (16 кг против ю кг), а скорость спонтанного деления выше в 20 раз (б-ю - ’ против 310 10). Нейтронный поток от 2 ззи в з раза выше, чем у 2 39Ри. Создание ядериого заряда на основе 2 ззи требует больших усилий, чем на ^Ри. Основное препятствие - наличие в 2ззи примеси 232 U, у-излучение проектов распада которого затрудняет работы с 2 ззи и позволяет легко обнаружить готовое оружие. К тому же, короткий период полураспада у 2 3 2 U делает его активным источником а- частиц. 2 ззи с 1% 232 и имеет в з раза более сильную a-активность, чем оружейный плутоний и, соответственно, большую радиотоксичность. Эта а- активность вызывает рождение нейтронов в лёгких элементах оружейного заряда. Для минимизации этой проблемы присутствие таких элементов как Be, В, F, Li должно быть минимальным. Наличие нейтронного фона не влияет на работу" имплозионные системы, но для пушечных схемы требуется высокий уровень чистоты по лёгким элементам. Содержание 23 2 U в оружейном 2 ззи не должно превышать 5 частей на миллион (0.0005%). В топливе энергетических тепловых реакторов наличие 2 зги не вредно, а даже желательно, т.к. снижает возможность применения урана для оружейных целей. После переработки ОЯТ и повторного использования топлива содержание 232U достигает о, 1+0,2%.

Распад 2 ззи происходит по следующим направлениям:

А-распад в 22 9Th (вероятность юо%, энергия распада 4,909 МэВ):

энергия испускаемых яг-частиц 4,729 МэВ (в 1,61% случаев), 4,784 МэВ (в 13,2% случаев) и 4,824 МэВ (в 84,4% случаев).

  • - спонтанное деление (вероятность
  • - кластерный распад с образованием нуклида 28 Mg (вероятность распада менее 1,з*10 _1 з%):

Кластерный распад с образованием нуклида 24 Ne (вероятность распада 7,3-10-“%):

Цепочка распада 2 ззи относится к нептуниевому ряду.

Удельная радиоактивность 2 ззи 3,57-ю 8 Бк/г, что соответствует a-активности (и радиотоксичиости) -15% от плутония. Всего 1% 2 3 2 U увеличивает радиоактивность до 212 мКи/г.

Уран-234 (уран II, UII) входит в состав природного урана (0,0055%), 2,445105 лет, а-излучатель (энергия а-частиц 4,777 (72%) и

4,723 (28 %) МэВ), материнские радионуклиды: 2 з 8 Ри(а), 234 Pa(P), 234 Np(p +),

дочерний изотоп в 2 з»ть.

Обычно 234 U находится в равновесии с 2 з 8 и, распадаясь и образуясь с одинаковой скоростью. Примерно половину радиоактивности природного урана составляет вклад 234U. Обычно 234U получают ионно-обменной хроматографией старых препаратов чистого 2 з 8 Ри. При а-распаде *звРи поддается 2 34U, поэтому старые препараты 2 з 8 Ри представляют собой хорошие источники 2 34U. юо г 2з8Ри содержат через год 776 мг 2 34U, через 3 года

2,2 г 2 34U. Концентрация 2 34U в высокообогащённом уране довольно высока из-за предпочтительного обогащения лёгкими изотопами. Поскольку 2 34и - сильный у-излучатель, имеются ограничения на его концентрацию в уране, предназначенном для переработки в топливо. Повышенный уровень 234и приемлем для реакторов, но переработанное ОЯТ содержит уже неприемлемые уровни этого изотопа.

Распад 234и происходит по следующим направлениям:

А-распад в 2 з°ТЬ (вероятность 100%, энергия распада 4,857 МэВ):

энергия испускаемых а-частиц 4,722 МэВ (в 28,4% случаев) и 4,775 МэВ (в 71,4% случаев).

  • - спонтанное деление (вероятность 1,73-10-9%).
  • - кластерный распад с образованием нуклида 28 Mg (вероятность распада 1,4-10" п %, по другим данным 3,9-10-“%):
  • - кластерный распад с образованием нуклидов 2 4Ne и 26 Ne (вероятность распада 9-10" ,2 %, по другим данным 2,з-10 _11 %):

Известен единственный изомер 2 34ти (Тх/ 2 = 33,5 мкс).

Сечение поглощения 2 34U тепловых нейтронов юо барн, а для резонансного интеграла, усреднённого по различным промежуточным нейтронам 700 барн. Поэтому в реакторах на тепловых нейтронах он конвертируется в делящийся 235U с большей скоростью, чем намного большее количество 238U (с поперечным сечением 2,7 барн) конвертируется в 2 з9Ри. В результате, ОЯТ содержит меньше 2 34U, чем свежее топливо.

Уран-235 относится к семейству 4П+3, способен давать цепную реакцию деления. Это - первый изотоп, на котором была открыта реакция вынужденного деления ядер под действием нейтронов. Поглощая нейтрон, 235U переходит в 2 зби, который делится на две части, выделяя энергию и испуская несколько нейтронов. Делящийся нейтронами любых энергий, способный к самопроизвольному делению, изотоп 2 35U входит в состав природного уфана (0,72%), а-излучатель (энергии 4,397 (57%) и 4,367 (18%) МэВ), Ti/j=7,038-ю 8 лет, материнские нуклиды 2 35Ра, 2 35Np и 2 39Ри, дочерний - 23«Th. Интенсивность спонтанного деления 2 3su 0,16 делений/с кг. При делении одного ядра 2 35U выделяется 200 МэВ энергии=з,2Ю п Дж, т.е. 18 ТДж/моль=77 ТДж/кг. Поперечное сечение деления тепловыми нейтронами составляет 545 барн, а быстрыми нейтронами - 1,22 барна, выход нейтронов: на один акт деления - 2,5, на один поглощенный нейтрон - 2,08.

Замечание. Поперечное сечение захвата медленных нейтронов с образованием изотопа 2 зи (юо барн), так что общее поперечное сечение поглощения медленных нейтронов составляет 645 барн.


  • - спонтанное деление (вероятность 7*10~9%);
  • - кластерный распад с образованием нуклидов 2 °Ne, 2 5Ne и 28 Mg (вероятности соответственно составляют 8-io _10 %, 8-кг 10 %, 8*Ю" ,0 %):

Рис. 1.

Известен единственный изомер 2 35n»u (7/ 2 =2б мин).

Удельная активность 2 35Ц 7,77-ю 4 Бк/г. Критическая масса оружейного урана (93,5% 2 35U) для шара с отражателем - 15-7-23 кг.

Деление 2 »5U используется в атомном оружии, для производства энергии и для синтеза важных актинидов. Цепная реакция поддерживается благодаря избытку нейтронов, образующихся при делении 2 35Ц.

Уран-236 встречается на Земле природе в следовых количествах (на Луне его больше), а-излучатель (?

Рис. 2. Радиоактивное семейство 4/7+2 (включая -з 8 и).

В атомном реакторе 2 ззи поглощает тепловой нейтрон, после чего он с вероятностью 82% делится, а с вероятностью 18% испускает у-квант и превращается в 2 з б и (на юо разделившихся ядер 2 35U приходится 22 образовавшихся ядер 2 3 6 U). В незначительных количествах входит в состав свежего топлива; накапливается при облучении урана нейтронами в реакторе, и потому используется как «сигнализатор» ОЯТ. 2 з б и образуется как побочный продукт при сепарации изотопов методом газовой диффузии при регенерации использованного ядерного горючего. Образующийся в энергетическом реакторе 236 U - нейтронный яд, его присутствие в ядерном топливе компенсируют высоким уровнем обогащения 2 35U.

2 з б и используется как трассер смешения океанических вод.

Уран-237, Т&= 6,75 дн, бета- и гамма-излучатель, может быть получен по ядерным реакциям:


Детектрирование 287 и проводят по линиям с Еу= о,об МэВ (36%), 0,114 МэВ (0,06%), 0,165 МэВ (2,0%), 0,208 МэВ (23%)

237U применяется в методе радиоактивных индикаторов в химических исследованиях. Измерение концентрации (2 4°Am) в осадках, выпадающих после испытания атомного оружия, даёт ценную информацию о типе заряда и использованной аппаратуре.

Уран-238 - относится к семейству 4П+2, делится нейтронами высоких энергий (более 1,1 МэВ), способен к самопроизвольному делению, составляет основу природного урана (99,27%), а-излучатель, 7’ ; /2=4>4б8-109 лет, непосредственно распадается на 2 34Th, образует ряд генетически связанных радионуклидов, и через 18 продуктов превращается в 20б РЬ. Чистый 2 3 8 U имеет удельную радиоактивность 1,22-104 Бк. Период полураспада очень большой - порядка ю 16 лет, так что вероятность деления по отношению к основному процессу - испусканию а-частицы - составляет всего Ю" 7 . Один килограмм урана даёт всего ю спонтанных делений в секунду, а за это же время а-частицы излучают 20 миллионов ядер. Материнские нуклиды: 2 4 2 Ри(а), *з8ра(р-) 234Th, дочерний T,/ 2 = 2 :i 4 Th.

Уран-238 образуется в результате следующих распадов:

2 (V0 4) 2 ] 8Н 2 0. Из вторичных минералов распространён гидратированный уранилфосфат кальция Ca(U0 2) 2 (P0 4) 2 -8H 2 0. Часто урану в минералах сопутствуют другие полезные элементы - титан, тантал, редкие земли. Поэтому естественно стремление к комплексной переработке ураисодержащих руд.

Основные физические свойства урана: атомная масса 238,0289 а.е.м. (г/моль); радиус атома 138 пм (1 пм=ю 12 м); энергия ионизации (первый электрон 7,11 эВ; электронная конфигурация -5f36d‘7s 2 ; степени окисления 6, 5, 4, 3; Г П л=113 2 , 2 °; Т т ,1=3818°; плотность 19,05; удельная теплоёмкость 0,115 ДжДКмоль); прочность на разрыв 450 МПа, Теплота плавления 12,6 кДж/моль, теплота испарения 417 кДж/моль, удельная теплоёмкость 0,115 Дж/(моль-К); молярный объём 12,5 смз/моль; характеристическая температура Дебая © Д =200К, температура перехода в сверхпроводящее состояние о,68К.

Уран - тяжёлый, серебристо-белый глянцевитый металл. Он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами, в порошкообразном состоянии пирофорен. Уран имеет три аллотропные формы: альфа (ромбическая, a-U, параметры решётки 0=285, Ь= 587, с=49б пм, стабильна до 667,7°), бета (тетрагональная, p-U, стабильна от 667,7 до 774,8°), гамма (с кубической объёмно центрированной решёткой, y-U, существующей от 774,8° до точки плавления, frm=ii34 0), в которых уран наиболее податлив и удобен для обработки.

При комнатной температуре устойчива ромбическая a-фаза, призматическая структура состоит из волнистых атомных слоёв, параллельных плоскости abc, в чрезвычайно асимметричной призматической решётке. В пределах слоёв, атомы тесно связаны, в то время как прочность связей между атомами смежных слоёв намного слабее (рис. 4). Такая анизотропная структура затрудняет сплавление урана с другими металлами. Только молибден и ниобий создают с ураном твёрдофазные сплавы. Всё же металлический уран может вступать во взаимодействие со многими сплавами, образуя интерметаллические соединения.

В интервале 668^775° существует (3-уран. Тетрагонального типа решётка имеет слоистую структуру со слоями, параллельными плоскости ab в позициях 1/4С, 1/2с и 3/4С элементарной ячейки. При температуре выше 775° образуется у-уран с объёмноцентрированной кубической решёткой. Добавление молибдена позволяет иметь у-фазу при комнатной температуре. Молибден образует обширный ряд твёрдых растворов с у-ураном и стабилизирует у-фазу при комнатной температуре. у-Уран намного мягче и более ковкий, чем хрупкие а- и (3-фазы.

Существенное влияние на физико-механические свойства урана оказывает облучение нейтронами, вызывающее увеличение размеров образца, изменение формы, а также резкое ухудшение механических свойств (ползучесть, охрупчивание) урановых блоков в процессе работы ядерного реактора. Увеличение объёма обусловлено накоплением в уране при делении примесей элементов с меньшей плотностью (перевод 1% урана в осколочные элементы увеличивает объём на 3,4%).


Рис. 4. Некоторые кристаллические структуры урана: а - а-уран, б - р-уран.

Наиболее распространенными методами получения урана в металлическом состоянии является восстановление их фторидов щёлочными или щелочноземельными металлами или электролиз расплавов их солей. Уран может быть получен также металлотермическим восстановлением из карбидов вольфрамом или танталом.

Способность легко отдавать электроны определяет восстановительные свойства урана и его большую химическую активность. Уран может взаимодействовать почти со всеми элементами, кроме благородных газов, приобретая при этом степени окисления +2, +3, +4, +5, +6. В растворе основная валентность 6+.

Быстро окисляясь на воздухе, металлический уран покрывается радужной плёнкой оксида. Мелкий порошок урана самовоспламеняется на воздухе (при температурах 1504-175°), образуя и;} Ов. При 1000° уран соединяется с азотом, образуя жёлтый нитрид урана. Вода способна реагировать с металлом, медленно при низкой температуре и быстро при высокой. Уран бурно реагирует с кипящей водой и водяным паром с выделением водорода, который с ураном образует гидрид

Эта реакция проходит более энергично, чем горение урана в кислороде. Такая химическая активность урана заставляет защищать уран в ядерных реакторах от контакта с водой.

Уран растворяется в соляной, азотной и других кислотах, образуя соли U(IV), зато не взаимодействует со щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться.

Особенности структуры электронных оболочек атома урана (наличие ^/-электронов) и некоторые его физико-химические свойства служат основанием для отнесения урана к ряду актинидов. Однако есть химическая аналогия урана с Сг, Мо и W. Уран отличается высокой химической активностью и реагирует со всеми элементами за исключением благородных газов. В твёрдой фазе примерами U(VI) являются триоксид уранила U0 3 и уранилхлорид U0 2 C1 2 . Тетрахлорид урана UC1 4 и диоксид урана U0 2

Примеры U(IV). Вещества, содержащие U(IV) обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе.

В системе уран-кислород установлены шесть оксидов: UO, U0 2 , U 4 0 9 , и 3 Ов, U0 3 . Для них характерна широкая область гомогенности. U0 2 - основной оксид, тогда как U0 3 - амфотерна. U0 3 - взаимодействует с водой с образованием ряда гидратов, из них важнейшие - диурановая кислота H 2 U 2 0 7 и урановая кислота Н 2 1Ю 4 . Со щелочами U0 3 образует соли этих кислот - уранаты. При растворении U0 3 в кислотах образуются соли двухзарядного катиона уранила U0 2 a+ .

Диоксид урана, U0 2 , стехиометрического состава имеет коричневый цвет. При увеличении содержания кислорода в оксиде цвет изменяется от темнокоричневого до чёрного. Кристаллическая структура типа CaF 2 , а = 0,547 нм; плотность 10,96 г/см"* (самая большая плотность среди оксидов урана). Т , пл =2875 0 , Т кн „ = 3450°, Д#°298 =-1084,5 кДж/моль. Диоксид урана является полупроводником с дырочной проводимостью, сильный парамагнетик. ПДК = о,015мг/мз. Не растворим в воде. При температуре -200° присоединяет кислород, достигая состава U0 2>25 .

Оксид урана (IV) можно полущить по реакциям:

Диоксид урана проявляет только основные свойства, ему соответствует основной гидроксид U(OH) 4 , который далее превращается в гидратированный гидроксид U0 2 Н 2 0. Диоксид урана медленно растворяется в сильных кислотах-неокислителях в отсутствие кислорода воздуха с образованием ионов Ш + :

U0 2 + 2H 2 S0 4 ->U(S0 4) 2 + 2Н 2 0. (38)

Он растворим в концентрированных кислотах, причём скорость растворения можно значительно увеличить добавлением фтор-иона.

При растворении в азотной кислоте происходит образование ура- нил-иона 1Ю 2 2+ :

Триурана октаоксид U 3 0s (закись-окись урана) - порошок, окраска которого меняется от чёрной до темно-зелёной; при сильном измельчении - оливково-зелёного цвета. Крупные кристаллы чёрного цвета, оставляют на фарфоре зеленые штрихи. Известны три кристаллические модификации U 3 0h: a-U 3 C>8 - кристаллическая структура ромбическая (пр. гр. С222; 0=0,671 нм; 6=1,197 нм; с=о,8з нм; d =0,839 нм); p-U 3 0e - кристаллическая структура ромбическая (пространственная группа Стст; 0=0,705 нм; 6=1,172 нм; 0=0,829 нм. Начало разложения юоо° (переходит в 1Ю 2), ПДК= 0,075 мг/мз.

U 3 C>8 можно получить по реакции:

Прокаливанием U0 2 , U0 2 (N0 3) 2 , U0 2 C 2 0 4 3H 2 0, U0 4 -2H 2 0 или (NH 4) 2 U 2 0 7 при 750 0 на воздухе или в атмосфере кислорода (р=150+750 мм рт. ст.) полущают стехиометрически чистый U 3 08.

При прокаливании U 3 0s при Т>юоо° идёт восстановление до 1Ю 2 , однако при остывании на воздухе происходит возврат в U 3 0s. U 3 0e растворяется только в концентрированных сильных кислотах. В соляной и серной кислотах образуется смесь U(IV) и U(VI), а в азотной кислоте - нитрат ура- нила. Разбавленная серная и соляная кислоты очень слабо реагируют с U 3 Os даже при нагревании, добавка окислителей (азотной кислоты, пиролюзита) резко увеличивает скорость растворения. Концентрированная H 2 S0 4 растворяет U 3 Os с образованием U(S0 4) 2 и U0 2 S0 4 . Азотная кислота растворяет U 3 Oe с образованием уранилнитрата.

Триоксид урана, U0 3 - кристаллическое или аморфное вещество ярко жёлтого цвета. Реагирует с водой. ПДК = 0,075 мг/м 3 .

Получается при прокаливании полиуранатов аммония, пероксида урана, оксалата уранила при 300-^-500° и шестиводного уранилнитрата. При этом образуется оранжевый порошок аморфной структуры с плотностью

6,8 г/смз. Кристаллическая форма 1Ю 3 может быть получена окислением U 3 0 8 при температурах 450°ч-750° в токе кислорода. Существуют шесть кристаллических модификаций U0 3 (а, (3, у> §> ?, п)- U0 3 гигроскопичен и во влажном воздухе превращается в гидроксид уранила. Его нагрев при 520°-^6оо° даёт соединение состава 1Ю 2>9 , дальнейшее нагревание до 6оо° позволяет получить U 3 Os.

Водород, аммиак, углерод, щелочные и щёлочноземельные металлы восстанавливают U0 3 до U0 2 . При пропускании смеси газов HF и NH 3 образуется UF 4 . В высшей валентности уран проявляет амфотерные свойства. При действии кислот U0 3 или на его гидраты образуются соли уранила (U0 2 2+), окрашенные в жёлто-зелёный цвет:

Большинство солей уранила хорошо растворимы в воде.

Со щелочами при сплавлении U0 3 образует соли урановой кислоты - уранаты МДКХ,:

Со щелочными растворами триоксид урана образует соли полиура- новых кислот - полиуранаты дгМ 2 0у1Ю 3 пН^О.

Соли урановой кислоты практически нерастворимы в воде.

Кислотные свойства U(VI) выражены более слабо, чем основные.

С фтором уран реагирует при комнатной температуре. Стабильность высших галогенидов падает от фторидов к иодидам. Фториды UF 3 , U4F17, U2F9 и UF 4 нелетучи, a UFe летучь. Важнейшими из фторидов являются UF 4 и UFe.

Фтппиппиянир окгиля т»яня ппптркярт по прякттии:

Реакция в кипящем слое осуществляется по уравнению:

Возможно использование фторирующих агентов: BrF 3 , CC1 3 F (фреон-11) или CC1 2 F 2 (фреон-12):

Фторид урана(1У) UF 4 («зелёная соль») - порошок от голубоватозеленоватого до изумрудного цвета. Г 11Л =юз6°; Г к,«,.=-1730°. ДЯ° 29 8= 1856 кДж/моль. Кристаллическая структура моноклинная (пр. гп. С2/с; 0=1,273 нм; 5=1,075 нм; 0=0,843 нм; d= 6,7 нм; р=12б°20"; плотность 6,72 г/смз. UF 4 - устойчивое, неактивное, нелетучее соединение плохо растворимое в воде. Лучший растворитель для UF 4 - дымящая хлорная кислота НС10 4 . В кислотах-окислителях растворяется с образованием соли уранила; быстро растворяется в горячем растворе Al(N0 3) 3 или А1С1 3 , а также в растворе борной кислоты, подкисленной H 2 S0 4 , НС10 4 или НС1. Комплексооб- разователи, связывающие фторид-ионы, например, Fe3 + , А1з + или борная кислота, также способствуют растворению UF 4 . С фторидами других металлов образует ряд малорастворимых двойных солей (MeUFe, Me 2 UF6, Me 3 UF 7 и др.). Промышленное значение имеет NH 4 UF 5 .

Фторид U(IV) является промежуточным продуктом при получении

как UF6, так и металлического урана.

UF 4 можно полущить по реакциям:

или путём электролитического восстановления фторида уранила.

Гексафторид урана UFe - при комнатной температуре кристаллы цвета слоновой кости с высоким коэффициентом преломления. Плотность

5,09 г/смз, плотность жидкого UFe - 3,63 г/смз. Летучее соединение. Твоаг = 5^>5°> Гил=б4,5° (под давлением). Давление насыщенных паров достигает атмосферы при 560°. Энтальпия образования АЯ° 29 8=-211б кДж/моль. Кристаллическая структура ромбическая (пр. гр. Рпта; 0=0,999 нм; fe= 0,8962 нм; с=о,5207 нм; d 5,060 нм (25 0). ПДК - 0,015 мг/мз. Из твердого состояния UF6 может возгоняться из твёрдой фазы (сублимировать) в газ, минуя жидкую фазу при широком диапазоне давлений. Теплота сублимации при 50 0 50 кДж/мг. Молекула не имеет дипольного момента, поэтому UF6 не ассоциирует. Пары UFr, - идеальный газ.

Получается при действии фтора на U его соединения:


Помимо газофазных реакций существуют и жидкофазные реакции

получения UF6 с помощью галогенфторидов, например

Существует способ получения UF6 без использования фтора - окислением UF 4:

UFe не реагирует с сухим воздухом, кислородом, азотом и С0 2 , но при контакте с водой, даже с её следами, подвергается гидролизу:

Взаимодействует он с большинством металлов, образуя их фториды, что осложняет способы его хранения. В качестве материалов сосудов для работы с UF6 пригодны: при нагревании Ni, монель и Pt, на холоду - ещё и тефлон, абсолютно сухие кварц и стекло, медь и алюминий. При температурах 25-ьюо 0 образует комплексные соединения с фторидами щелочных металлов и серебра типа 3NaFUFr>, 3KF2UF6.

Хорошо растворяется в различных органических жидкостях, в неорганических кислотах и во всех галогеифторидах. Инертен к сухим 0 2 , N 2 , С0 2 , С1 2 , Вг 2 . Для UFr, характерны реакции восстановления с большинством чистых металлов. С углеводородами и другими органическими веществами UF6 энергично реагирует, поэтому закрытые сосуды с UFe могут взрываться. UF6 в интервале 25 -гЮО° образует комплексные соли с фторидами щелочных и других металлов. Это свойство используют в технологии для избирательного извлечения UF

Гидриды урана UH 2 и UH 3 занимают промежуточное положение между солеподобными гидридами и гидридами типа твердых растворов водорода в металле.

При взаимодействии урана с азотом образуются нитриды. В системе U-N известны четыре фазы: UN (нитрид урана), a-U 2 N 3 (сесквинитрид), р- U 2 N 3 и UN If90 . Достичь состава UN 2 (динитрид) не удаётся. Надёжными и хорошо управляемыми являются синтезы мононитрида урана UN, которые лучше осуществлять непосредственно из элементов. Нитриды урана - порошкообразные вещества, окраска которых меняется от темно-серой до серой; похожи на металл. UN обладает кубической гранецентрированной кристаллической структурой, типа NaCl (0=4,8892 А); (/=14,324, 7^=2855°, устойчив в вакууме до 1700 0 . Его получают взаимодействием U или гидрида U с N 2 или NH 3 , разложением высших нитридов U при 1300° или их восстановлением металлическим ураном. U 2 N 3 известен в двух полиморфных модификациях: кубической а и гексагональной р (0=0,3688 нм, 6=0,5839 нм), выделяет N 2 в вакууме выше 8оо°. Его получают восстановлением UN 2 водородом. Динитрид UN 2 синтезируют реакцией U с N 2 при высоком давлении N 2 . Нитриды урана легко растворимы в кислотах и в растворах щелочей, но разлаются расплавленными щелочами.

Нитрид урана получают двустадийным карботермическим восстановлением оксида урана:

Нагрев в аргоне при 7М450 0 в течение 10*20 час

Получить нитрид урана состава, близкого к динитриду, UN 2 , можно воздействием аммиаком на UF 4 при высокой температуре и давлении.

Динитрид урана при нагреве разлагается:

Нитрид урана, обогащённый по 2 35U, обладает более высокой плотностью деления, теплопроводностью и температурой плавления, чем оксиды урана - традиционное топливо современных энергетических реакторов. Он также обладает хорошей механической и стабильностью, превышающей традиционное топливо. Поэтому это соединение рассматривается как перспективная основа для ядерное горючего реакторов на быстрых нейтронах (поколение IV ядерных реакторов).

Замечание. UN весьма полезно обогатить по ‘5N, т.к. ,4 N склонен захватывать нейтроны, генерируя по реакции (п,р) радиоактивный изотоп 14 С.

Карбид урана UC 2 (?-фаза) - светло-серое с металлическим блеском кристаллическое вещество. В системе U-C (карбиды урана) существуют UC 2 (?-фаза), UC 2 (б 2 -фаза), U 2 C 3 (е-фаза), UC (б 2 -фаза) - карбиды урана. Дикарбид урана UC 2 может быть получен по реакциям:

U + 2C^UC 2 (54в)

Карбиды урана используются как топливо атомных реакторов, они перспективны как топливо для космических ракетных двигателей.

Нитрат уранила, уранил азотнокислый, U0 2 (N0 3) 2 -6H 2 0. Роль металла в этой соли исполняет катион уранила 2+ . Кристаллы жёлтого цвета с зеленоватым отблеском, легко растворимые в воде. Водный раствор имеет кислую реакцию. Растворим в этаноле, ацетоне и эфире, нерастворим в бензоле, толуоле и хлороформе. При нагревании кристаллы плавятся и выделяют HN0 3 и Н 2 0. Кристаллогидрат легко выветриваются на воздухе. Характерная реакция - при действии NH 3 образуется жёлтый осадок урановокислого аммония.

Уран способен образовывать металл органические соединения. Примерами являются циклопен-тадиенильные производные состава U(C 5 H 5) 4 и их галогензамещенные и(С 5 Н 5) 3 Г или и(С 5 Н 5) 2 Г 2 .

В водных растворах уран наиболее устойчив в состоянии окисления U(VI) в виде иона уранила U0 2 2+ . В меньшей степени для него характерно состояние U(IV), но он может находиться даже в виде U(III). Состояние окисления U(V) может существовать как ион 1Ю 2 + , но это состояние редко наблюдается из-за склонности к диспропорционированию и гидролизу.

В нейтральных и кислых растворах U(VI) существует в виде U0 2 2+ - иона уранила, окрашенного в жёлтый цвет. К хорошо растворимым солям уранила относятся нитрат U0 2 (N0 3) 2 , сульфат U0 2 S0 4 , хлорид U0 2 C1 2 , фторид U0 2 F 2 , ацетат U0 2 (CH 3 C00) 2 . Эти соли выделяются из растворов в виде кристаллогидратов с различным числом молекул воды. Малорастворимыми солями уранила являются: оксалат U0 2 C 2 0 4 , фосфаты U0 2 HP0., и UO2P2O4, уранилфосфат аммония UO2NH4PO4, уранилванадат натрия NaU0 2 V0 4 , ферроцианид (U0 2) 2 . Для иона уранила характерна склонность к образованию комплексных соединений. Так известны комплексы с ионами фтора типа -, 4- ; нитратные комплексы ‘ и 2 *; сернокислые комплексы 2 " и 4-; карбонатные комплексы 4 " и 2 " и др. При действии щелочей на растворы солей уранила выделяются труднорастворимые осадки диуранатов типа Me 2 U 2 0 7 (моноуранаты Me 2 U0 4 не выделяются из растворов, они получаются сплавлением оксидов урана с щелочами). Известны полиуранаты Me 2 U n 0 3 n+i (например, Na 2 U60i 9).

U(VI) восстанавливается в кислых растворах до U(IV) железом, цинком, алюминием, гидросульфитом натрия, амальгамой натрия. Растворы окрашены в зелёный цвет. Щёлочи осаждают из них гидроокись и0 2 (0Н) 2 , плавиковая кислота - фторид UF 4 -2,5H 2 0, щавелевая кислота - оксалат U(C 2 0 4) 2 -6H 2 0. Склонность к комплексообразованию у иона U 4+ меньше, чем у ионов уранила.

Уран (IV) в растворе находится в виде ионов U 4+ , которые сильно гидролизованы и гидратированы:

В кислых растворах гидролиз подавляется.

Уран (VI) в растворе образует оксокатион уранил - U0 2 2+ Известны многочисленные уранил-соединения, примерами которых являются: U0 3 , U0 2 (C 2 H 3 0 2) 2 , U0 2 C0 3 -2(NH 4) 2 C0 3 U0 2 C0 3 , U0 2 C1 2 , U0 2 (0H) 2 , U0 2 (N0 3) 2 , UO0SO4, ZnU0 2 (CH 3 C00) 4 и др.

При гидролизе уранил-иона образуется ряд многоядерных комплексов:

При дальнейшем гидролизе возникает U 3 0s(0H) 2 и затем U 3 0 8 (0H) 4 2 -.

Для качественного обнаружения урана применяют методы химического, люминисцентного, радиометрического и спектрального анализов. Химические методы преимущественно основаны на образовании окрашенных соединений (например, красно-бурая окраска соединения с ферроцианидом, жёлтая - с перекисью водорода, голубая - реактивом арсеназо). Люминисцентный метод основан на способности многих соединений урана под действием УФ-лучей давать желтовато-зеленоватое свечение.

Количественное определение урана производится различными методами. Важнейшие из них: объёмные методы, состоящие в восстановлении U(VI) до U(IV) с последующим титрованием растворами окислителей; весовые методы - осаждение уранатов, пероксида, купферранатов U(IV), оксихинолята, оксалата и т.п. с последующей их прокалкой при юоо° и взвешиванием U 3 0s; полярографические методы в растворе нитрата позволяют определить 10*7-гЮ-9 г урана; многочисленные колориметрические методы (например, с Н 2 0 2 в щелочной среде, с реактивом арсеназо в присутствии ЭДТА, с дибензоилметаном, в виде роданидного комплекса и др.); люминесцентный метод, позволяющий определить при сплавлении с NaF до ю 11 г урана.

235U относится к группе А радиационной опасности, минимально значимая активность МЗА=3,7-Ю 4 Бк, 2 з 8 и - к группе Г, МЗА=3,7-ю 6 Бк (300 г).

В статье рассказывается о том, когда был открыт такой химический элемент, как уран, и в каких отраслях производства в наше время применяется это вещество.

Уран - химический элемент энергетической и военной промышленности

Во все времена люди пытались найти высокоэффективные источники энергии, а в идеале - создать так называемый К сожалению, невозможность его существования теоретически доказали и обосновали еще в XIX веке, но ученые все равно никогда не теряли надежды воплотить в жизнь мечту о некоего рода устройстве, которое было бы способно выдавать большое количество «чистой» энергии на протяжении очень долгого времени.

Частично это удалось воплотить в жизнь с открытием такого вещества, как уран. Химический элемент с данным названием лег в основу разработки атомных реакторов, которые в наше время обеспечивают энергией целые города, подводные лодки, полярные суда и прочее. Правда, «чистой» их энергию назвать нельзя, но в последние годы множество фирм разрабатывают для широкой продажи компактные «атомные батарейки» на основе трития - в них нет подвижных частей и они безопасны для здоровья.

Однако в этой статье мы подробно разберем историю открытия химического элемента под названием уран и реакцию деления его ядер.

Определение

Уран - химический элемент, который имеет атомный номер 92 в периодической таблице Менделеева. Атомная же масса его составляет 238,029. Обозначается он символом U. В нормальных условиях является плотным, тяжелым металлом серебристого цвета. Если говорить о его радиоактивности, то сам по себе уран - элемент, обладающий слабой радиоактивностью. Также он не имеет в своем составе полностью стабильных изотопов. А самым стабильным из существующих изотопов считается уран-338.

С тем, что собой представляет данный элемент, мы разобрались, а теперь рассмотрим историю его открытия.

История

Такое вещество, как природная окись урана, известно людям с глубокой древности, а использовали ее древние мастера для изготовления глазури, которой покрывали различную керамику для водонепроницаемости сосудов и других изделий, а также их украшения.

Важной датой в истории открытия этого химического элемента стал 1789 год. Именно тогда химик и немец по происхождению Мартин Клапрот смог получить первый металлообразный уран. А свое название новый элемент получил в честь открытой восемью годами ранее планеты.

Почти 50 лет полученный тогда уран считали чистым металлом, однако, в 1840 году химик из Франции Эжен-Мелькьор Пелиго смог доказать, что материал, полученный Клапротом, несмотря на подходящие внешние признаки, вовсе не металл, а оксид урана. Чуть позже все тот же Пелиго получил настоящий уран - очень тяжелый металл серого цвета. Именно тогда впервые и был определен атомный вес такого вещества, как уран. Химический элемент в 1874 году был помещён Дмитрием Менделеевым в его знаменитую периодическую систему элементов, причём Менделеев удвоил атомный вес вещества в два раза. И лишь спустя 12 лет опытным путем было доказано, что не ошибался в своих расчетах.

Радиоактивность

Но по-настоящему широкая заинтересованность этим элементом в научных кругах началась в 1896 году, когда Беккерель открыл тот факт, что уран испускает лучи, которые были названы в честь исследователя - лучи Беккереля. Позже одна из знаменитейших учёных в этой области - Мария Кюри, назвала это явление радиоактивностью.

Следующей важной датой в изучении урана принято считать 1899 год: именно тогда Резерфорд обнаружил, что излучение урана является неоднородным и делится на два типа - альфа- и бета-лучи. А год спустя Поль Виллар (Вийяр) открыл и третий, последний известный нам на сегодняшний день тип радиоактивного излучения - так называемые гамма-лучи.

Спустя семь лет, в 1906 году, Резерфорд на основе своей теории радиоактивности провел первые опыты, цель которых заключалась в том, чтобы определить возраст различных минералов. Эти исследования положили начало в том числе формированию теории и практики

Деление ядер урана

Но, наверное, наиважнейшее открытие, благодаря которому началась широкая добыча и обогащение урана как в мирных, так и военных целях, - это процесс деления ядер урана. Произошло это в 1938 году, открытие было осуществлено силами немецких физиков Отто Гана и Фрица Штрассмана. Позже эта теория получила научные подтверждения в работах еще нескольких немецких физиков.

Суть открытого ими механизма состояла в следующем: если облучать ядро изотопа урана-235 нейтроном, то, захватывая свободный нейтрон, оно начинает делиться. И, как мы все теперь знаем, процесс этот сопровождается выделением колоссального количества энергии. Происходит это в основном благодаря кинетической энергии самого излучения и осколков ядра. Так что теперь мы знаем, как происходит деление ядер урана.

Открытие этого механизма и его результатов и является отправной точкой для использования урана как в мирных, так и военных целях.

Если говорить о его применении в военных целях, то впервые теорию о том, что можно создать условия для такого процесса, как непрерывная реакция деления ядра урана (поскольку для подрыва ядерной бомбы необходима огромная энергия), доказали советские физики Зельдович и Харитон. Но чтобы создать такую реакцию, уран должен быть обогащен, поскольку в обычном своем состоянии нужными свойствами он не обладает.

С историей этого элемента мы ознакомились, теперь разберемся, где же он применяется.

Применение и виды изотопов урана

После открытия такого процесса, как реакция цепного деления урана, перед физиками стал вопрос, где можно его использовать?

В настоящее время существует два основных направления, где используют изотопы урана. Это мирная (или энергетическая) промышленность и военная. И первая, и вторая использует реакцию изотопа урана-235, отличается лишь выходная мощность. Проще говоря, в атомном реакторе нет необходимости создавать и поддерживать этот процесс с той же мощностью, какая необходима для осуществления взрыва ядерной бомбы.

Итак, были перечислены основные отрасли, в которых используется реакция деления урана.

Но получение изотопа урана-235 - это необычайно сложная и затратная технологическая задача, и не каждое государство может позволить себе построить обогатительные фабрики. К примеру, для получения двадцати тонн уранового топлива, в котором содержание изотопа урана 235 будет составлять от 3-5%, потребуется обогатить более 153 тонн природного, «сырого» урана.

Изотоп урана-238 в основном применяют в конструктивной схеме ядерного оружия для увеличения его мощности. Также при захвате им нейтрона с последующим процессом бета-распада этот изотоп может со временем превращаться в плутоний-239 - распространенное топливо для большинства современных атомных реакторов.

Несмотря на все недостатки таких реакторов (большая стоимость, сложность обслуживания, опасность аварии), их эксплуатация окупается очень быстро, и энергии они производят несравнимо больше, чем классические тепловые или гидроэлектростанции.

Также реакция позволила создать ядерное оружие массового поражения. Оно отличается огромной силой, относительной компактностью и тем, что способно делать непригодным для проживания людей большие площади земли. Правда, в современном атомном оружии применяется плутоний, а не уран.

Обедненный уран

Существует и такая разновидность урана, как обедненный. Он отличается очень низким уровнем радиоактивности, а значит, не опасен для людей. Применяется он опять-таки в военной сфере, к примеру, его добавляют в броню американского танка «Абрамс» для придания ей дополнительной крепости. Помимо этого, практически во всех высокотехнологичных армиях можно встретить различные Помимо высокой массы, обладают они еще одним очень интересным свойством - после разрушения снаряда его осколки и металлическая пыль самовоспламеняются. И кстати, впервые такой снаряд применили во время Второй мировой войны. Как мы видим, уран - элемент, которому нашли применение в самых разных областях человеческой деятельности.

Заключение

По прогнозам ученых, примерно в 2030 году полностью истощатся все крупные месторождения урана, после чего начнется разработка труднодоступных его слоев и будет расти цена. Кстати, сама абсолютно безвредна для людей - некоторые шахтеры работают на его добыче целыми поколениями. Теперь мы разобрались в истории открытия этого химического элемента и в том, как применяют реакцию деления его ядер.

Кстати, известен интересный факт - соединения урана долгое время применялись в качестве красок для фарфора и стекла (так называемое вплоть до 1950-х годов.


(по Полингу) 1.38 U←U 4+ -1.38В
U←U 3+ -1.66В
U←U 2+ -0.1В 6, 5, 4, 3 Термодинамические свойства 19.05 / ³ 0.115 /( ·) 27.5 /( ·) 1405.5 12.6 / 4018 417 / 12.5 ³/ Кристаллическая решётка орторомбическая 2.850 Отношение c/a n/a n/a

История

Ещё в древнейшие времена (I-й век до нашей эры) природная урана использовалась для изготовления жёлтой глазури для .

Уран был открыт в 1789 немецким химиком Мартином Генрихом Клапротом (Klaproth) при исследовании минерала («урановая смолка»). Назван им в честь , открытой в 1781. В металлическом состоянии уран получен в 1841 французским химиком Эженом Пелиго при восстановлении UCl 4 металлическим калием. урана обнаружил в 1896 француз . Первоначально урану приписывали 116, но в 1871 пришел к выводу, что ее надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г.Сиборг пришел к выводу, что эти элементы () правильнее располагать в периодической системе в одной клетке с элементом № 89 . Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электронного подуровня.

Нахождение в природе

Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5 10 -4 % по массе. В морской воде концентрация урана менее 10 -9 г/л, всего в морской воде содержится от 10 9 до 10 10 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них U 3 O 8 , уранинит (U,Th)O 2 , урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO 2) 2 (VO 4) 2 ] 8H 2 O.

Изотопы

Природный Уран состоит из смеси трёх изотопов: 238 U - 99,2739%, период полураспада T 1 / 2 = 4,51Ї10 9 лет, 235 U - 0,7024% (T 1 / 2 = 7,13Ї10 8 лет) и 234 U - 0,0057% (T 1 / 2 = 2,48Ї10 5 лет).

Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240.

Наиболее долгоживущий - 233 U (T 1 / 2 = 1,62Ї10 5 лет) получается при облучении тория нейтронами.

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы элемента № 92 легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод элемента № 92 в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют . Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. И либо нужно прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит или . Слишком много кислоты приходится тратить на их растворение, и в этих случаях лучше воспользоваться ( ).

Проблему выщелачивания урана из решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с минералами подают поток . При этом из сернистых минералов образуется , которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - и - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие . Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши еще и тем, что позволяют достаточно полно извлекать уран из бедных растворов, в литре которых лишь десятые доли грамма элемента № 92.

После этих операций уран переводят в твердое состояние - в один из оксидов или в тетрафторид UF 4 . Но этот уран еще надо очистить от примесей с большим сечением захвата тепловых нейтронов - , . Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Вот и приходится уже полученный технически чистый продукт еще раз растворять - на этот раз в . Уранилнитрат UO 2 (NO 3) 2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO 3 , которую восстанавливают до UO 2 .

Это вещество - предпоследнее на пути от руды к металлу. При температуре от 430 до 600 °C оно реагирует с сухим фтористым водородом и превращается в тетрафторид UF 4 . Именно из этого соединения обычно получают металлический уран. Получают с помощью или обычным .

Физические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления).

Химические свойства

Химическая активность металлического урана высока. На воздухе он покрывается радужной пленкой . Порошкообразный уран , он самовозгорается при температуре 150-175 °C. При сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U 3 O 8 . Если этот оксид нагревать в атмосфере при температуре выше 500 °C, образуется UO 2 . При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К 2 UO 4 (уранат калия), СаUO 4 (уранат кальция), Na 2 U 2 O 7 (диуранат натрия).

Применение

Ядерное топливо

Наибольшее применение имеет урана 235 U, в котором возможна самоподдерживающаяся . Поэтому этот изотоп используется как топливо в , а также в (критическая масса около 48 кг). Выделение изотопа U 235 из природного урана - сложная технологическая проблема, (см. ). Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности (используются нейтроны, порожденные термоядерной реакцией). В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 , который затем используется как ядерное топливо.

Уран-233 искуственно получаемый в реакторах (посредством облучения нейтронами и превращающегося в и затем в уран-233) является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг). Уран-233 так же наиболее перспективное топливо для газофазных ядерных ракетных двигателей.

Другие сферы применения

  • Небольшая добавка урана придаёт красивый зеленовато-жёлтый оттенок стеклу.
  • Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород+гексан).
  • Сплавы железа и обедненного урана (уран-238) применяются как мощные магнитострикционные материалы.
  • В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для получения тонированных фотографических отпечатков.

Обеднённый уран

После извлечения U-235 из природного урана, оставшийся материал носит название «обедненный уран», так как он обеднен 235-ым изотопом. По некоторым данным в США хранится около 560 000 тонн обедненного гексафторида урана (UF 6). Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него U-234. Из-за того, что основное использование урана - производство энергии, обедненный уран бесполезный продукт с низкой экономическое ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью: использование его для радиационной защиты (как это не странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете содержится 1500 кг обедненного урана для этих целей. Еще этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Самое известное применение урана - в качестве сердечников для американских . При сплавлении с 2% или 0.75% и термической обработке (быстрая закалка разогретого до 850 °С металла в воде или масле, дальнейшее выдерживание при 450 °С 5 часов) металлический уран становится тверже и прочнее (прочность на разрыв больше 1600 МПа, при том, что у чистого урана он равен 450 МПа). В сочетании с большой плотностью, это делает закаленную урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому . Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением ее на воздухе с другой стороны брони. Около 300 тонн обедненного урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Обедненный уран используется в современной танковой броне, например, танка .

Физиологическое действие

В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезенка, и бронхо-легочные . Содержание в органах и тканях человека и животных не превышает 10 -7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м 3 , для нерастворимых форм урана 0,075 мг/м 3 . При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность . В первую очередь поражаются (появляются белок и сахар в моче, ). При хронической возможны нарушения кроветворения и нервной системы.

Добыча урана в мире

Согласно «Красной книге по урану», выпущенной , в 2005 добыто 41250 тонн урана (в 2003 - 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объема его потребления (остальное извлекается из старых ядерных боеголовок).

Добыча по странам в тоннах по содержанию U на 2005-2006 гг.

Добыча в России

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» () и ОАО «Хиагда» ().

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

См. также

Ссылки


Понравилась статья? Поделитесь с друзьями!