Создание новых лекарственных препаратов. Основные направления поиска и создания лекарственных веществ

Затраты на создание новых лекарственных препаратов:от 5 до 15 лет
от 1 млн. $ до 1 млрд. $
2

Основные термины:

лекарственная субстанция
опытная партия лекарственного препарата
лекарственный препарат
3

Основные этапы создания лекарственных препаратов:

Создание биологически активной субстанции (экстракт из растений
или животных тканей, биотехнологический или химический синтез,
использование природных минералов)
Фармакологические исследования (фармакодинамические,
фармакокинетические и токсикологические исследования)
Экспертиза документов о доклинических исследованиях в
Федеральной службе по надзору в сфере здравоохранения и
социального развития (ФГУ «Научный центр экспертизы средств
медицинского применения»)
Клинические испытания (1-4 фазы)
Экспертиза документов о клинических испытаниях в Федеральной
службе по надзору в сфере здравоохранения и социального
развития (ФГУ «Научный центр экспертизы средств медицинского
применения») Приказ МЗ и РФ и внесение в государственный
реестр лекарственных средств
Внедрение в медицинскую практику (организация производства и
использование в лечебных учреждениях)
4

Выявление биологически активных веществ (лекарственных субстанций)

A. Выделение препаратов из естественного
лекарственного сырья.
B. Химический синтез препаратов
C. Биотехнологические методы (клеточная и
генная инженерия)
5

A. Выделение препаратов из
естественного лекарственного
сырья
растений
животных тканей
из минерального источников
6

B. Химический синтез препаратов:
Эмпирический путь
Случайные находки
Скрининг
Направленный синтез
Энантиомеры (хиральный переход)
Антисенспептиды
Антиидиопатические антитела
Антисенснуклеотиды
Создание пролекарств
Создание биопрепаратов
Лекарства-клоны (me too)
C. Биотехнологические методы
(клеточная и генная инженерия)
7

Методы направленного поиска биологически активных веществ:

Скрининг
Высокопроизводительный скрининг
На основании изучения зависимости биологического
действия от химической структуры (создание
фармакофора)
На основании зависимости биологического действия
от физико-химических свойств соединений.
Регрессионные методы изучения зависимости между
химической структурой и биологической
активностью
Анализ распознавания образов для прогнозирования
биологической активности химических соединений
(от молекулы до дескриптора) (комбинаторная
химия).
8

Виртуальный скрининг
Сопоставление структур с базой данных
биологически активных веществ
(программы Flex, Catalyst, Pass, Микрокосм и
т.д.).
Квантовохимическое моделирование
взаимодействия лекарства с рецептором
(построение 3D модели и докинг).
Фрагментарно-ориентированный дизайн
лигандов.
Комбинаторный дизайн лигандов.
9

10. Методы скрининга биологически активных веществ:

На животных
На изолированных органах и тканях
На изолированных клетках
На фрагментах клеток (мембраны,
рецепторы)
На белковых молекулах (ферментах)
10

11. Исследования в фармакологической лаборатории (GLP-стандарт)

На интактных животных
На животных с экспериментальной
патологией
Изучение механизма действия
Изучение токсикологических свойств
Количественные аспекты фармакологии
(ED50, ЛД50, IC50 и т.д.)
11

12.

Основные лекарственные формы
ффффформы
Твердые
Жидкие
Мягкие
Капсулы
Другие
Таблетки
Растворы
Мази
Желатиновые
Драже
Суспензии
Пасты
Кишечнорастворимые
Порошки
Отвары,
настои
Суппозитории
Гранулы
Микстуры
Пластыри
Пилюли
Экстракты
Таблетки-ретард
Таблетки-ретард с двухфазным высвобождением
Желудочно-кишечные
терапевтические системы
12
Капсулы-ретард
Желудочно-кишечные
терапевтические системы

13. Исследования в лаборатории готовых лекарственных форм

Разработка лекарственных форм препарата.
Разработка инновационных лекарственных форм
(длительного действия, направленной доставки,
со специальными фармакокинетическими
свойствами и т.д.).
Изучение биодоступности лекарственной формы
препарата
Разработка фармакопейной статьи препарата и
фармакопейной статьи стандарта препарата.
13

14. Исследования в лаборатории фармакокинетики лекарственных форм

Разработка методов количественного
определения препарата в биологических тканях.
Определение основных фармакокинетических
параметров препарата в экспериментальных
исследованиях и в клинике.
Определение корреляции между
фармакокинетическими и фармакологическими
параметрами препарата.
14

15. Биоэтическая экспертиза исследований лекарственного препарата

Проведение правового и этического
контроля доклинических исследований
основано на международных стандартах.
Условия содержания и питания.
Гуманность обращения.
Условия забоя животных (наркоз).
Согласование протокола исследования с
комиссией по биоэтике.
15

16. Исследования в лаборатории токсикологии лекарственных препаратов.

Определение острой токсичности (LD50, на двух видах животных и
разных путях введения).
Изучение способности к кумуляции (фармакокинетический или
токсикологический метод).
Исследование подострой или хронической токсичности (в трех
дозах при путях введения соответственно клиническому
применению).
Определение действия на мужские и женские гонады
(гонадотропное действие).
Выявление трансплацентарных эффектов (эмбриотоксичность,
тератогенность, фетотоксичность и действие в постнатальном
периоде).
Исследование мутагенных свойств.
Определение аллергенности и местнораздражающего действия
лекарственного препарата.
Выявление иммунотропности лекарственного препарата.
Изучение канцерогенных свойств.
16

17. Требования к проведению клинических исследований новых лекарственных препаратов

Контрольная группа больных.
Рандомизация больных по группам исследований.
Использование «двойного слепого метода» исследования и
плацебо.
Четкие критерии включения и исключения больных из
исследования (для подбора гомогенной популяции больных
со сходной тяжестью патологии).
Четкие критерии достигаемого эффекта.
Количественная оценка эффектов.
Сравнение с эталонным препаратом.
Соблюдение этических принципов (информированное
согласие).
17

18. Права пациентов, участвующих в клинических исследованиях.

Добровольность участия в исследовании (письменное
согласие)
Информированность пациета об исследовании
Обязательное страхование здоровья пациента.
Право на отказ от участия в исследовании.
Не допускаются клинические исследования новых
лекарственных средств на несовершеннолетних.
Запрещены клинические исследования новых лекарственных
препаратов на:
несовершеннолетних, не имеющих родителей
беременных женщинах
военнослужащих
заключенных.
18

19. Фазы клинических исследований лекарственных препаратов.

1-я фаза.
Проводится на здоровых добровольцах (оптимальные дозы,
фармакокинетика).
2-я фаза.
Проводится на небольшой группе больных (до 100-200
больных). Плацебо-контролируемые рандомизированные
исследования.
3-я фаза.
Рандомизированные исследования на большой группе
больных (до нескольких тысяч) в сравнении с известными
препаратами.
4-я фаза.
Пострегистрационные клинические исследования.
Рандомизация, контроль. Фармакоэпидемиологические и
фармакоэкономическиеисследования.
19

20. Контроль за отдаленными последствиями использования лекарственных препаратов.

Сбор информации о побочных и
токсических свойствах.
Проведение фармакоэпидемиологических
исследований (изучение
фармакотерапевтических и токсических
свойств).
Заявка производителя или иных
организаций о снятии препарата с
регистрации.

Основными задачами фармакологии является поиск и изучение механизмов действия новых ЛС для последующего их внедрения в широкую медицинскую практику. Процесс создания ЛС достаточно сложен и включает в себя несколько взаимосвязанных этапов. Необходимо подчеркнуть, что в создании и изучении лекарственных средств, помимо фармакологов, непосредственное участие принимают химики-синтетики, биохимики, биофизики, морфологи, иммунологи, генетики, токсикологи, инженеры-технологи, фармацевты, клинические фармакологи. В случае необходимости к их созданию привлекаются и другие специалисты. На первом этапе создания лекарственных средств к работе приступают химики-синтетики, которые синтезируют новые химические соединения, обладающие потенциальной биологической активностью. Обычно химики-синтетики осуществляют целенаправленный синтез соединений или модифицируют химическую структуру уже известных эндогенных (вырабатываемых в организме) биологически активных веществ или ЛС. Целенаправленный синтез лекарственных веществ подразумевает создание биологически активных веществ с заранее заданными фармакологическими свойствами. Как правило, такой синтез проводят в ряду химических соединений, в котором ранее были выявлены вещества, обладающие специфической активностью. Например, известно, что алифатические производные фенотиазина (промазин, хлорпромазин и др.) относятся к группе ЛС, эффективных в лечении психозов. Синтез близких им по химической структуре алифатических производных фенотиазина позволяет предположить наличие у вновь синтезированных соединений антипсихотической активности. Таким образом, были синтезированы, а затем внедрены в широкую медицинскую практику такие антипсихотические ЛС, как алимемазин, левомепромазин и др. В ряде случаев химики-синтетики модифицируют химическую структуру уже известных лекарственных средств. Например, в 70-х гг. XX в. в России было синтезировано и внедрено в широкую медицинскую практику антиаритмическое ЛС морацизин, которое, по мнению ведущего кардиолога США Б.Лауна (B.Lown), было признано самым перспективным антиаритмическим ЛС того времени. Замена в молекуле морацизина морфолиновой группы на диэтиламин позволила создать новый, оригинальный, высокоэффективный антиаритмический препарат этацизин. Создавать новые высокоэффективные ЛС можно и путем синтеза экзогенных аналогов (полученных искусственно) эндогенных (существующих в организме) биологически активных веществ. Например, хорошо известно, что важную роль в переносе энергии в клетке играет макроэргическое соединение креатинфосфат. В настоящее время в клиническую практику внедрен синтетический аналог креатинфосфата - препарат неотон, который с успехом применяют для лечения нестабильной стенокардии, острого инфаркта миокарда и т.д. В некоторых случаях синтезируют не полный структурный аналог эндогенного биологического вещества, а близкое к нему по структуре химическое соединение. При этом иногда молекулу синтезируемого аналога модифицируют таким образом, чтобы придать ей какие-либо новые свойства. Например, структурный аналог эндогенного биологически активного вещества норадреналина препарат фенилэфрин обладает аналогичным с ним сосудосуживающим действием, однако в отличие от норадреналина фенилэфрин в организме практически не разрушается ферментом катехол-О-метилтрансферазой, поэтому действует более длительно. Возможен и другой путь направленного синтеза ЛС - изменение их растворимости в жирах или воде, т.е. изменение липофильности или гидрофильности препаратов. Например, хорошо известная ацетилсалициловая кислота не растворима в воде. Присоединение к молекуле ацетилсалициловой кислоты лизина (препарат ацетилсалицилат лизин) делает это соединение легкорастворимым. Всасываясь в кровь, этот препарат гидролизуется до ацетилсалициловой кислоты и лизина. Можно привести много примеров направленного синтеза ЛС. Биологически активные соединения могут быть получены и из микроорганизмов, тканей растений и животных, т.е. биотехнологическим путем. Биотехнология - отрасль биологической науки, в которой для производства материалов, в том числе и ЛС, используют различные биологические процессы. Например, производство природных антибиотиков основано на способности ряда грибков и бактерий продуцировать биологически активные вещества, оказывающие бактериолитическое (вызывающее гибель бактерий) или бактериостатическое (вызывающее потерю способности бактериальных клеток к размножению) действие. Также при помощи биотехнологии возможно выращивание культуры клеток лекарственных растений, которые по биологической активности близки к натуральным растениям. Важная роль в создании новых высокоэффективных лекарственных средств принадлежит такому направлению биотехнологии, как генная инженерия. Недавние открытия в этой области, показавшие, что человеческие гены клонируются (клонирование - процесс искусственного получения клеток с заданными свойствами, например, путем переноса гена человека в бактерии, после чего они начинают продуцировать биологически активные вещества с заданными свойствами), позволили приступить к широкому промышленному производству гормонов, вакцин, интерферонов и других высокоэффективных ЛС с заранее заданными свойствами. Например, пересадка гена человека, ответственного в его организме за выработку инсулина, непатогенному микроорганизму - кишечной палочке (Е. coli ), позволило получать в промышленном масштабе человеческий инсулин. В последнее время появилось еще одно направление создания новых высокоэффективных ЛС, базирующееся на изучении особенностей их метаболизма (превращения) в организме. Например, известно, что в основе паркинсонизма лежит дефицит нейромедиатора дофамина в экстрапирамидной системе мозга. Естественно было бы для лечения паркинсонизма использовать экзогенный дофамин, который бы возместил нехватку эндогенного дофамина. Такие попытки были предприняты, однако выяснилось, что экзогенный дофамин в связи с особенностями химического строения не в состоянии проникнуть через гематоэнцефалический барьер (барьер между кровью и тканью мозга). Позже был синтезирован препарат леводопа, который в отличие от дофамина легко проникает через гематоэнцефалический барьер в ткань мозга, где метаболизируется (декарбоксилируется) и превращается в дофамин. Другим примером таких ЛС могут служить некоторые ингибиторы ангиотензинпревращающего фермента (ингибиторы АПФ) - периндоприл, рамиприл, эналаприл и др. Так, биологически неактивный эналаприл, метаболизируясь (гидролизуясь) в печени, образует биологически высокоактивный метаболит эналаприлат обладающий гипотензивным (понижающим артериальное давление) действием. Такие ЛС получили название пролекарств, или биопрекузоров (метаболических прекузоров). Возможен и другой путь создания ЛС на основе изучения их метаболизма - создание комплексов «вещество носитель - биологически активное вещество». Например, известно, что полусинтетический антибиотик из группы пенициллинов - ампициллин - плохо всасывается в желудочно-кишечном тракте (ЖКТ) - не более 30 -40 % принятого количества препарата. Для повышения всасывания (биодоступности) ампициллина был синтезирован полусинтетический пенициллин III поколения - бикампициллин, не обладающий противомикробным действием, но практически полностью всасывающийся в кишечнике (90 - 99 %). Попав в кровь, бикампициллин в течение 30 - 45 мин метаболизируется (гидролизуется) до ампициллина, который и оказывает выраженное противомикробное действие. Лекарственные средства, относящиеся к биопрекузорам и веществам-носителям, получили общее название - пролекарства. Помимо изучения фармакологически активных химических соединений, полученных путем целенаправленного синтеза или модификации структуры известных ЛС, возможен поиск биологически активных веществ среди различных классов химических соединений или продуктов растительного и животного происхождения, ранее в качестве потенциальных ЛС не изучавшихся. В этом случае при помощи различных тестов среди этих соединений отбирают вещества, обладающие максимальной биологической активностью. Такой эмпирический (от греч. empeiria - опыт) подход получил название скрининга фармакологических ЛС. Скрининг (от англ. screening ) - отбор, отсев, сортировка. В том случае, когда при изучении соединений оценивают весь спектр их фармакологической активности, говорят о полномасштабном скрининге, а в случае поиска веществ с какой-либо определенной фармакологической активностью, например противосудорожной, говорят о направленном скрининге лекарственных веществ. После этого в экспериментах на животных (in vivo ) и/или опытах, проводимых вне организма, например на культуре клеток (in vitro ), переходят к систематическому изучению спектра и особенностей фармакологической активности вновь синтезированных или отобранных эмпирическим путем соединений. При этом изучение биологической активности соединений проводят как на здоровых животных, так и в модельных экспериментах. Например, изучение спектра фармакологической активности веществ, обладающих антиаритмической активностью, проводят на моделях нарушений сердечного ритма, а антигипертензивных (понижающих артериальное давление - АД) соединений - в экспериментах на спонтанно гипертензивных крысах (специально выведенной линии крыс, обладающих врожденной гипертензией - высоким давлением). После выявления у изучаемых соединений высокой специфической активности, не уступающей, как минимум, активности уже известных (эталонных) ЛС, переходят к изучению особенностей их механизма действия, т. е. изучению особенностей влияния этих соединений на те или иные биологические процессы в организме, посредством которых реализуется их специфический фармакологический эффект. Например, в основе местноанестезирующего (обезболивающего) действия местных анестетиков лежит их способность понижать проницаемость мембран нервных волокон для ионов Na + и тем самым блокировать проведение по ним эфферентных импульсов, или влияние b-адреноблокаторов на сердечную мышцу обусловлено их способностью блокировать b 1 -адренорецепторы, расположенные на клеточной мембране клеток миокарда. В этих исследованиях, помимо собственно фармакологов, принимают участие биохимики, морфологи, электрофизиологи и т.д. По завершении фармакологических исследований и после определения механизмов действия изучаемых соединений начинается новый этап - оценка токсичности потенциальных ЛС. Токсичность (от греч. toxikon - яд) - действие ЛС, наносящее вред организму, которое может выражаться в расстройстве физиологических функций и/или нарушении морфологии органов и тканей вплоть до их гибели. Токсичность вновь синтезированных соединений изучают в специальных токсикологических лабораториях, где, помимо собственно токсичности, определяют мутагенность, тератогенность и онкогенность этих соединений. Мутагенность (от лат. mutatio - изменение, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества вызывать изменения генетического спектра клетки, приводящие к передаче по наследству его измененных свойств. Тератогенность (от греч. teras - чудовище, урод, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества оказывать повреждающее действие на плод. Онкогенность (от греч. onkoma - опухоль, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества вызывать раковые заболевания. Параллельно с изучением токсичности вещества инженеры-технологи разрабатывают лекарственную форму изучаемого вещества, определяют способы хранения лекарственной формы и совместно с химиками-синтетиками разрабатывают техническую документацию для промышленного производства субстанции. Субстанция (действующее вещество, активное начало) - компонент лекарственного средства, оказывающий собственно терапевтическое, профилактическое или диагностическое действие. В лекарственную форму (придаваемое ЛС удобное для применения в клинической практике состояние, при котором достигается необходимый эффект) входят еще и вспомогательные вещества (сахар, мел, растворители, стабилизаторы и т.д.), которые самостоятельно фармакологической активностью не обладают. В тех случаях, когда после токсикологических исследований доказана безопасность изучаемого вещества для организма, результаты фармакологических и токсикологических исследований обобщают, составляют временную Фармакопейную статью и материалы подают в ФГУ «Научный центр экспертизы средств медицинского применения» (ФГУ «НЦЭСМП») при Министерстве здравоохранения и социального развития РФ для получения разрешения на проведение I фазы клинических испытаний. Фармакопейная статья - государственный стандарт ЛС, содержащий перечень показателей и методов контроля их качества. ФГУ «НЦЭСМП» - экспертный орган Министерства здравоохранения и социального развития РФ, занимающийся рассмотрением вопросов, связанных с практическим применением отечественных и зарубежных лекарственных, профилактических, диагностических и физиотерапевтических средств, а также вспомогательных веществ. Главным вопросом, который решает ФГУ «НЦЭСМП», является подготовка рекомендаций Министерству здравоохранения и социального развития РФ на разрешение медицинского применения новых ЛС. После поступления документов в ФГУ «НЦЭСМП» все материалы доклинического изучения ЛС детально рассматривает специальный экспертный совет, в который входят ведущие специалисты страны (фармакологи, токсикологи, клинические фармакологи, клиницисты), и в случае положительной оценки представленных материалов принимают решение о проведении I фазы клинических испытаний. В случае получения разрешения ФГУ «НЦЭСМП» испытуемое ЛС передают клиническим фармакологам для проведения I фазы клинических испытаний, которые проводят на ограниченном контингенте больных. В некоторых странах I фазу клинических испытаний проводят на здоровых испытуемых - добровольцах (20 - 80 чел.). В этом случае особое внимание уделяют изучению безопасности и переносимости однократной и многократных доз испытуемого ЛС и особенностей его фармакокинетики. II фазу клинических испытаний нового ЛС проводят на пациентах (200 - 600 чел.), страдающих заболеванием, для лечения которого предполагают использовать изучаемый препарат. Главной целью II фазы клинических испытаний является доказательство клинической эффективности изучаемого ЛС. В том случае, если II фаза клинических испытаний показала эффективность препарата, переходят к III фазе исследований, которую проводят на большем числе (более 2 000) пациентов. Основной задачей III фазы клинических испытаний является определение эффективности и безопасности изучаемого ЛС в условиях, максимально приближенных к тем, в которых его будут использовать в случае получения разрешения на широкое медицинское применение препарата. В случае успешного завершения этого этапа клинических испытаний всю имеющуюся документацию обобщают, делают соответствующее заключение, и материалы передают в Министерство здравоохранения и социального развития РФ для получения окончательного разрешения на широкое клиническое использование препарата. Последний этап (IV фаза) клинических испытаний проводят уже после получения разрешения Министерства здравоохранения и социального развития Российской Федерации на клиническое применение нового ЛС; IV фаза клинических испытаний называется постмаркетинговым исследованием (англ. - postmarketing trials ). Целью IV фазы клинических испытаний является:

  • усовершенствование схем дозирования препарата;
  • сравнительный анализ эффективности лечения изучаемым ЛС и эталонными препаратами, применяемыми для фармакотерапии данной патологии;
  • выявление отличий изучаемого препарата от других ЛС данного класса;
  • выявление особенностей взаимодействия изучаемого ЛС с пищей и/или другими лекарствами;
  • выявление особенностей применения изучаемого ЛС у пациентов различных возрастных групп;
  • выявление отдаленных результатов лечения и т.д.
Протокол выполнения клинических испытаний достаточно сложен. Эффективность ЛС в клинике оценивается, в том числе и в сравнении с плацебо (от лат. placebo - понравлюсь, удовлетворю) - лекарственной формой, содержащей фармакологически индифферентное (неактивное) вещество, по внешнему виду и вкусу имитирующей то или иное ЛС, например таблетку, содержащую смесь сахара и мела. В клинической фармакологии плацебо используют при клинических испытаниях нового ЛС: одной группе пациентов назначают исследуемый препарат, а другой - плацебо и сравнивают эффекты от лечения. При этом все пациенты уверены в том, что они получают новое эффективное ЛС, т.е. плацебо используют для того, чтобы выявить истинную фармакологическую активность препарата, а не психотерапевтический эффект от его назначения. При проведении клинических испытаний используют слепой и двойной слепой методы определения активности ЛС. В первом случае только лечащий врач знает, какому из пациентов назначают испытуемое ЛС, какому - плацебо. При двойном слепом методе ни лечащий врач, ни тем более больной не знают, что он получил: истинное ЛС или плацебо. При двойном слепом методе эффективность препарата оценивают, как правило, клинические фармакологи, проводящие исследование препарата. Значение клинических испытаний новых ЛС крайне важно: только в условиях клиники возможно выявление особенностей влияния ЛС на организм человека, в том числе особенности всасывания, распределения, связывания с белками плазмы крови, метаболизма и выведения. Кроме того, только в условиях клиники возможно выявление ряда побочных эффектов, например, влияние ЛС на психическую сферу, интеллектуальную деятельность и т.д. Процесс создания и изучения новых ЛС достаточно долог. В среднем от момента синтеза до получения разрешения на широкое клиническое использование препарата проходит 8-15 лет, а материальные затраты составляют 500 - 800 млн. долл. США. При этом только затраты труда составляют 140 - 200 человеко-лет. Фактически эти затраты гораздо больше, так как даже по самым оптимистическим подсчетам лишь 5 - 7 % вновь синтезированных соединений благополучно проходят все этапы экспериментального и клинического изучения и получают разрешение на широкое клиническое применение. Однако даже после передачи препарата в клиническую практику интерес фармакологов и фармацевтов к нему не ослабевает, поскольку создаются новые, более удобные для применения лекарственные формы, уточняются и оптимизируются, а в некоторых случаях и пересматриваются показания к его применению, разрабатываются новые схемы лечения, определяются особенности его взаимодействия с другими ЛС, создаются комбинированные ЛС и т.д. Например, ацетилсалициловая кислота была внедрена в клиническую практику в 1899 г. как противовоспалительное, жаропонижающее и ненаркотическое обезболивающее средство. По этим показаниям ее использовали более 60 лет. Однако в 1970-е гг. была выявлена способность ацетилсалициловой кислоты подавлять синтез тромбоксана и тем самым понижать агрегационную способность тромбоцитов, т.е. у препарата было выявлено мощное антиагрегационное действие (способность ЛС препятствовать склеиванию, слипанию тромбоцитов в просвете сосудов; отсюда - название этой группы ЛС - «антиагреганты»). В настоящее время ацетилсалициловую кислоту широко применяют в клинической практике для профилактики тромбообразования при различных заболеваниях сердечно-сосудистой системы. Более того, согласно данным некоторых ученых систематический прием ацетилсалициловой кислоты более чем на 50 % понижает риск развития повторного инфаркта миокарда и/или инсульта. Постепенно совершенствовались и лекарственные формы ацетилсалициловой кислоты. В настоящее время создано большое количество водорастворимых лекарственных форм ацетилсалициловой кислоты - ацилпирин растворимый, упсарин, аспирин УПСА и др. Известно, что основным побочным действием ацетилсалициловой кислоты, особенно при длительном применении, является повреждение слизистой оболочки желудка и кишечника, в результате чего развиваются эрозии, изъязвления слизистой оболочки и резко возрастает риск развития желудочно-кишечных кровотечений, а у пациентов, страдающих язвенной болезнью желудка, возможно прободение язвы. Для профилактики этих осложнений разработаны и внедрены в широкую клиническую практику специальные лекарственные формы ацетилсалициловой кислоты, покрытые кишечнорастворимой оболочкой (аспирин кардио, тромбо АСС и др.), использование которых в определенной мере понижает риск развития этих осложнений.

Химико-фармацевтическая промышленность выпускает огромное количество лечебно-профилактических препаратов. В нашей стране зарегистрировано и занесено в Государственный реестр более 3 тыс. лекарственных средств. Однако перед фармакологами и химиками стоит задача постоянного поиска и создания новых, более эффективных лечебно-профилактических средств.

Особого успеха в деле создания новых препаратов достигли фармакология и фармацевтическая промышленность во второй половине прошлого столетия. 60-90% современных лекарственных средств не было известно еще 30 – 40 лет назад. Разработка и производство новых лекарственных средств - длительный процесс тщательных, многоэтапных фармакологических исследований и разносторонней организационной деятельности фармакологов, химиков, фармацевтов.

Создание лекарственных препаратов можно подразделить на несколько этапов:

1) составление плана поиска индивидуального вещества или суммарного препарата, который можно получить из различных источников;

2) получение веществ, которые намечены;

3) первичное исследование нового препарата на лабораторных животных. При этом изучают фармакодинамику веществ (специфическая активность, длительность эффекта, механизм и локализация действия) и фармакокинетику препарата (всасывание, распределение, превращение в организме и выведение). Определяют также побочный эффект, токсичность, канцерогенность, тератогенность и иммуногенность, эффективность веществ при патологических состояниях;

4) более детальное исследование отобранных веществ и сравнение их с известными лекарственными препаратами;

5) передача перспективных лекарственных препаратов в фармакологический комитет, состоящий из экспертов различных специальностей;

6) клиническое испытании новых лекарственных средств. От врачей в это время требуется творческий, строго научный подход в определении дозировок, схемы применения, установлении показаний, противопоказаний и побочных явлений;

7) вторичное представление результатов клинических испытаний в фармакологический комитет. При положительном решении лекарственное вещество получает «запись о рождении», ему присваивается фармацевтическое название и выдается рекомендация для промышленного производства;

8) разработка технологии промышленного производства препаратов.

К источникам получения лекарственных средств можно отнести:

· - минеральные вещества;

· - сырье растительного и животного происхождения;

· - синтетические соединения;

· - продукты жизнедеятельности микроорганизмов и грибов.

В настоящее время поиск лекарственных веществ ведется по следующим направлениям:

· - химический синтез препаратов;


· - получение препаратов из лекарственного сырья;

· - биосинтез лекарственных веществ - продуктов жизнедеятель­ности микроорганизмов и грибов;

· - генетическая инженерия лекарственных средств.

Химический синтез препаратов подразделяется на два направления:

· направленный синтез;

· эмпирический путь.

Направленный синтез может осуществляться путем воспроизведения биогенных веществ, синтезируемых живыми организмами. Таким путем были получены адреналин, норадреналин, окситоцин и др. К направленному синтезу относится поиск антиметаболитов - антагонистов естественных метаболитов. Например, антиметаболиты парааминобензойной кислоты, необходимой для роста и развития микроорганизмов, - сульфаниламидные препараты. Создание новых лекарственных веществ может осуществляться путем химической модификации молекул соединений с известной биологической активностью. Этим путем синтезированы многие более эффективные сульфаниламидные препараты. Определенный интерес представляет путь создания новых лекарственных средств, основанный на изучении химических превращений лекарств в организме и их продуктов метаболизма, а также механизмов химических превращений веществ. Например, в процессе биотрансформации имизина в организме образуется диметилимипрамин, обладающий более высокой активностью. Получение новых препаратов возможно и путем сочетания структур двух и более известных соединений с требуемыми свойствами.

Определенное значение в создании новых препаратов имеет и эмпирический путь. В результате случайных находок был открыт ряд препаратов. Около 40 лет назад косметические фирмы стали выпускать крем для бритья с добавлением веществ, которые раздражали мышечные волокна, поднимающие волосы (ощетинившуюся бороду легче брить). Случайно один пытливый парикмахер обратил внимание на то, что у его клиентов, болевших гипертонической болезнью, после применения нового крема кровяное давление уменьшается. Клофелин, который входил в состав крема, в настоящее время широко применяют для снижения артериального давления. Случайно открыто слабительное средство фенолфталеин и антидиабетический препарат будамид.

В основном эмпирический путь открытия новых препаратов осуществляется путем скрининга (от англ. to screen - просеивать). Этот путь основан на испытании многих химических соединений для выявления нового эффективного препарата. Это - малоэффективный и трудоемкий путь поиска лекарственных веществ. В среднем на 5-10 тыс. исследованных соединений приходится один оригинальный препарат. Стоимость одного препарата, получаемого этим путем, составляет около 7 млн долл.

Биотехнология - одно из будущих направлений получения лекарственных средств из сырья растительного и животного происхождения и микроорганизмов.

Перспективным направлением для фармакологии в создании новых лекарственных средств является использование достижений генетической инженерии. Так, манипуляции с генами позволили создать бактерии, продуцирующие инсулин, гормон роста человека, интерферон. Эти препараты в сотни раз дешевле своих природных аналогов, и их часто удается получить в более очищенном виде. А если учесть, что ряд активных веществ белкового происхождения присутствует в организме человека и животных в мизерных количествах и даже для их исследования приходится перерабатывать килограммы биоматериала, то перспективы этого направления в фармакологии становятся ясны. На основе генно-инженерных методов получены белки, регулирующие иммунный ответ; белки, являющиеся основой зубной эмали; белки с выраженным противовоспалительным действием; белки, стимулирующие рост и развитие кровеносных сосудов.

В ряде стран уже начали применять генно-инженерный активизатор плазминогена, позволяющий быстро и эффективно растворить тромбы в кровеносных сосудах. Все шире используется генно-инженерный фактор некроза опухолей - эффективное противораковое средство.

Технические стандарты на производство лекарственного средства и его форм, методы контроля их качества утверждает Фармакопейный комитет России. Только с его одобрения лекарственный препарат выпускается для широкого медицинского или ветеринарного применения.

Разработка новых пре­паратов включает в себя ряд последовательных этапов.

Первый этап направлен на поиск перспективных соединений , возможно, обла­дающих лечебным действием. Основные пути изложены выше.

Второй этап - это доклиническое изучение биологической ак­тивности обозначенных к дальнейшему исследованию веществ. Доклиническое изучение вещества разделяется на: фармакологичес­кое и токсикологическое.

Цель фармакологических исследований - определение не только терапевтической эффективности препарата и его влияния на системы организма, но и возможных побочных реакций, связанных с фармакологической активностью.

При токсикологических исследованиях устанавливают характер и возможные повреждающие воздействия на организм эксперимен­тальных животных. Выделяют три этапа токсикологических иссле­дований: 1) изучение токсичности препарата при однократном вве­дении; 2) определение хронической токсичности вещества при повторном введении на протяжении 1 года и больше; 3) установле­ние специфического влияния соединения (онкогенность, мутаген­ность, воздействие на плод и др.).

Третий этап - клинические испытания нового лекарственного вещества. Проводится оценка терапевтической или профилактической эффективности, переносимости , установление доз и схем примене­ния препарата, а также сравнительных характеристик с другими лекарственными средствами. В процессе клинических испытаний выделяют четыре фазы .

В фазе I устанавливают переносимость и терапевтическое действие исследуемого препара­та на ограниченном числе больных (5-10 чел.), а также и на здо­ровых добровольцах.

В фазу II клинические испытания проводят как на группе больных (100-200 чел.), так и на контрольной груп­пе. Для получения достоверных данных применяют «двойной сле­пой» метод , когда ни больной, ни врач, а только руководитель ис­пытания знает, какой используется препарат. Эффективность и переносимость нового фармакологического препарата сравнивают с таковыми плацебо или препаратом аналогичного действия.

Целью фазы III испытаний является получение дополнительной информа­ции об исследуемом фармакологическом средстве. При этом иссле­дования ведутся на сотнях или даже на тысячах больных как в ста­ционарных, так и в амбулаторных условиях. После всесторонних клинических испытаний Фармакологичес­ким комитетом дается рекомендация к практическому применению.

Фаза IV исследований изучает действие лекарственного средства на практике в разнообразных ситуациях, при этом особое внимание обращается на сбор и анализ данных о побочном действии иссле­дуемых лекарственных препаратов.

Каждое лекарственное средство до того, как начнет применяться в практической медицине должно пройти определенную процедуру изучения и регистрации, которая гарантировала бы, с одной стороны эффективность лекарства при лечении данной патологии, а с другой стороны – его безопасность.

Изучение лекарственного средства делится на два этапа: доклинический и клинический.

На доклиническом этапе происходит создание субстанции лекарственного вещества и испытание лекарственного препарата на животных с целью определения фармакологического профиля лекарства, определения острой и хронической токсичности, тератогенного (ненаследуемые дефекты в потомстве), мутагенного (наследуемые дефекты в потомстве) и канцерогенного действия (опухолевая трансформация клетки). Клинические испытания проводятся на добровольцах и делятся на три фазы. Первая фаза проводится на небольшом количестве здоровых людей и служит для определения безопасности препарата. Вторая фаза проводится на ограниченном числе пациентов (100-300 человек). Определяют переносимость терапевтических доз больным человеком и ожидаемые нежелательные эффекты. Третья фаза выполняется на большом числе пациентов (не менее 1.000-5.000 человек). Определяют степень выраженности терапевтического эффекта, уточняют нежелательные эффекты. При исследовании параллельно с группой принимающей исследуемое лекарство, набирается группа, которая получает стандартный препарат сравнения (позитивный контроль) или неактивный препарат, который внешне имитирует изучаемое лекарство (плацебо контроль). Это необходимо для того, чтобы исключить элемент самовнушения при лечении данным лекарством. При этом принимает ли пациент контрольный препарат или новое лекарство может не знать не только сам пациент, но и врач и даже руководитель исследования. Параллельно с началом продаж нового лекарства фармацевтический концерн организует четвертую фазу клинических испытаний (постмаркетинговые исследования). Цель этой фазы – выявить редко встречающиеся, но потенциально опасные нежелательные эффекты лекарства. Участниками этой фазы являются все практикующие врачи, которые назначают лекарство и пациенту, которые его применяют. При обнаружении серьезных недостатков лекарство может быть отозвано концерном. В целом процесс разработки нового лекарства занимает от 5 до 15 лет.



При проведении клинических испытаний возросли интенсивность общения и кооперация специалистов в области фундаментальной и клинической фармакологии, токсикологии, клинической медицины, генетики, молекулярной биологии, химии и биотехнологии.

Фармакокинетические и фармакодинамические параметры стали определять как на этапе доклинических фармакологических и токсикологических исследований, так и на стадии клинических испытаний. Выбор доз стал базироваться на оценке концентраций лекарственных средств и их метаболитов в организме. В арсенал токсикологии вошли исследования in vitro и эксперименты на трансгенных животных, позволившие приблизить модели заболеваний к реально существующим болезням человека.

В развитие фармакологии большой вклад внесли отечественные ученые. Иван Петрович Павлов (1849 - 1936) руководил экспериментальной лабораторией в клинике С. П. Боткина (1879 - 1890), заведовал кафедрой фармакологии в Военно-медицинской академии Санкт-Петербурга (1890 -1895). До этого, в 1890 г., он был избран заведующим кафедрой фармакологии в Императорском Томском университете. Деятельность И. П. Павлова как фармаколога отличалась широким научным размахом, блестящей постановкой экспериментов и глубоким физиологическим анализом

фармакологических данных. Физиологические методы, созданные И. П. Павловым, позволили исследовать лечебное действие сердечных гликозидов (ландыш, горицвет, морозник) на сердце и кровообращение, установить механизм жаропонижающего эффекта антипирина, изучить влияние алкалоидов (пилокарпин, никотин, атропин, морфин), кислот, щелочей и горечей на пищеварение.

Гениальным завершением научного творчества И. П. Павлова стали работы по физиологии и фармакологии высшей нервной деятельности. С помощью метода условных рефлексов впервые был открыт механизм действия на ЦНС спирта этилового, бромидов, кофеина. В 1904 г. исследования И.П. Павлова были удостоены Нобелевской премии.

Николай Павлович Кравков (1865 - 1924) - общепризнанный основоположник современного этапа развития отечественной фармакологии, создатель большой научной школы, руководитель кафедры в Военно-медицинской академии (1899 - 1924). Он открыл новое экспериментально-патологическое направление в фармакологии, внедрил в экспериментальную практику метод изолированных органов, предложил и совместно с хирургом С. П. Федоровым осуществил в клинике внутривенный наркоз гедоналом. Н. П. Кравков является основателем отечественной промышленной токсикологии, эволюционной и сравнительной фармакологии, впервые изучал действие лекарственных средств на эндокринную систему. Двухтомное руководство Н. П. Кравкова "Основы фармакологии" издавалось 14 раз. В память о выдающемся ученом учреждены премия и медаль за работы, которые внесли значительный вклад в развитие фармакологии.

Ученики Н. П. Кравкова Сергей Викторович Аничков (1892 - 1981) и Василий Васильевич Закусов (1903-1986) провели фундаментальные исследования синаптотропных средств и препаратов, регулирующих функции ЦНС.

Прогрессивные направления в фармакологии создали М. П. Николаев (исследовал действие лекарственных средств при заболеваниях сердечно-сосудистой системы), В. И. Скворцов (изучал фармакологию синаптотропных и снотворных средств), Н. В. Вершинин (предложил для медицинской практики препараты сибирских лекарственных растений и полусинтетическую левовращающую камфору), А. И. Черкес (автор фундаментальных работ по токсикологии и биохимической фармакологии сердечных гликозидов), Н. В. Лазарев (разработал модели заболеваний для оценки действия лекарственных средств, крупный специалист в области промышленной токсикологии), А. В. Вальдман (создатель эффективных психотропных препаратов), М. Д. Машковский (создатель оригинальных антидепрессантов, автор популярного руководства по фармакотерапии для врачей), Е. М. Думенова (создала эффективные средства для лечения эпилепсии), А. С. Саратиков (предложил для клиники препараты камфоры, психостимуляторы-адаптогены, гепатотропные средства, индукторы интерферона).

Понравилась статья? Поделитесь с друзьями!