Электрокардиографические отведения. Стандартные отведения от конечностей - I, II, III Отведениями эйнтховена называют

I отведение (правая рукалевая рука);

· II отведение (правая рука – левая нога);

· III отведение (левая рука – левая нога).

Проекции вектора на стандартные отведения соответствуют разностям потенциалов :

Сопоставляя , можно судить о величине и направлении вектора в целом.

За один цикл работы сердца конец интегрального электрического вектора сердца описывает сложную пространственную фигуру, при проекции которой во фронтальную плоскость тела мы получим фигуру, состоящую из трех петель: , , . Эти петли разделены интервалами нулевого потенциала, которые образуются вследствие того, что в эти периоды времени разности потенциалов в различных областях нервно-мышечного аппарата взаимокомпенсируются и результирующая разность потенциалов для всего сердца получается равной нулю.

Разность потенциалов от электродов передается на усилитель и записывается на движущейся ленте и таким образом мы получаем график, отражающий во времени проекции мгновенных значений интегрального электрического вектора сердца на линию соответствующего отведения.

Рис. ЭКГ здорового человека при частоте пульса 66 ударов в минуту.

Периодичность колебания ЭКГ (за цикл работы сердца) связана с частотой пульса и находится в норме в пределах 60 – 80 периодов в минуту или 1 – 1,3 Гц. Наибольшее значение напряжения имеет порядок несколько милливольт.

Для определения численного значения биопотенциалов сердца в единицах напряжения используют калибраторы напряжения. Запись калибровочного напряжения делают до или после снятия электрокардиограммы. Обычно используют калибровочный сигнал, равный 1 милливольту. Типичные значения максимальных амплитуд для нормальной ЭКГ следующие:

зубец P: 0,2 мВ;

зубец QRS: 0,5 – 1,5 мВ;

зубец T: 0,1 – 0,5 – мВ.

Аппарат для регистрации биопотенциалов, возникающих при сокращении сердечной мышцы, называется электрокардиографом . Представим его структурную схему.

Анализ электрокардиограмм

Сердце человека – это мощная мышца. При синхронном возбуждении волокон сердечной мышцы, в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов в несколько мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы. Моделировать электрическую активность сердца можно с использованием дипольного электрического генератора.

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена, согласно которой ‑ сердце ‑ это токовый диполь с дипольным моментом Р с (электрический вектор сердца), который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла (рис. 34).

По Эйнтховену сердце располагается в центре равностороннего треугольника, вершинами которого являются: правая
рука – левая рука – левая нога (рис. 35 а).

Разности потенциалов, снятые между этими точками – это проекции дипольного момента сердца на стороны этого треугольника:

Эти разности потенциалов, со времени Эйнтховена в физиологии принято называть «отведениями». Три стандартных отведения приведены на рис. 35 б. Направление вектора Р с определяет электрическую ось сердца.


Рис. 35 а.

Рис. 35 б. Нормальная ЭКГ в трех стандартных отведениях



Рис. 35 в. Зубец Р – деполяризация предсердия,

QRS – деполяризация желудочков, Т – реполяризация

Линия электрической оси сердца при пересечении с направлением 1-го отведения образует угол , который определяет направление электрической оси сердца (рис. 35 б). Так как электрический момент сердца-диполя изменяется со временем, то в отведениях будут получены зависимости разности потенциалов от времени, которые называются электрокардиограммами.

Ось О – это ось нулевого потенциала. На ЭКГ отмечают три характерных зубца P , QRS , T (обозначение по Эйнтховену).
Высоты зубцов в различных отведениях обусловлены направлением электрической оси сердца, т.е. углом (рис. 35 б). Наиболее высокие зубцы во втором отведении, низкие в третьем. Сопоставляя ЭКГ в трех отведениях за один цикл составляют представление о состоянии нервно-мышечного аппарата сердца (рис. 35 в).

Факторы, влияющие на ЭКГ

Положение сердца. Направление электрической оси сердца совпадает с анатомической осью сердца. Если угол находится в пределах от 40°до 70°, это положение электрической оси считается нормальным. ЭКГ имеет обычные соотношения зубцов в I, II, III стандартных отведениях. Если близок или равен 0°, то электрическая ось сердца параллельна линии первого отведения и ЭКГ характеризуется высокими амплитудами в I отведении. Если близок к 90°, амплитуды в I отведении минимальны. Отклонение электрической оси от анатомической в ту или другую сторону клинически означает одностороннее поражение миокарда.

Изменение положения тела вызывает некоторые изменения положения сердца в грудной клетке и сопровождается изменением электропроводности окружающих сердце сред. Если ЭКГ не изменяет своей формы при перемещении тела, то этот факт тоже имеет диагностическое значение.

Теоретические основы

Стандартные отведения


Отведение I.

Отведение II.

Отведение III.

Электрокардиограф

Электрокардиограф – прибор регистрирующий разности потенциалов, вызванных электрической активностью сердца, между точками на поверхности тела.

Типовые блоки электрокардиографа:

1. Входное устройство - система электродов, кабелей их подключения к прибору, приспособлений для фиксации электродов.

2. Усилитель биопотенциалов. Коэффициент усиления – порядка 1000.

3. Регистрирующее устройство - обычно термопринтер с разрешением не менее 8 точек/мм. Применяются значения скорости протяжки ленты 25 мм/с и 50 мм/с

4. ЖКИ – экран с видеоконтроллером.

5. Центральный процессор.

6. Клавиатура.

7. Блок питания

8. Блок калибровки. При его кратковременных включениях, на вход усилителя вместо пациента подключается калибровочный прямоугольный импульс амплитудой (1±0.01) мВ. Если коэффициент усиления по п.2 в допуске, то на ленте прописывается прямоугольный импульс высотой 10 мм

Требования ГОСТ 19687-89

ГОСТ 19687-89 «ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ БИОЭЛЕКТРИЧЕСКИХ ПОТЕНЦИАЛОВ СЕРДЦА» (см. Приложение 1) определяет основные характеристики электрокардиографов и электрокардиоскопов и методы их измерения. Основные параметры приборов должны соответствовать приведенным в таблице 1.

Таблица 1

Наименование параметра Значение параметра
1. Диапазон входных напряжении U, мВ. впределах 2. Относительная погрешность измерения напряжения* и, в диапазонах: от 0,1 до 0,5 мВ, %, не более от 0,5 до 4 мВ, %, не более 3. Нелинейность, %, в пределах: для электрокардиографов для электрокардиоскопов 4. Чувствительность S, мм/мВ 5. Относительная погрешность установки чувствительности, %. в пределах 6. Эффективная ширина записи (изображения) канала В, мм, не менее 7. Входной импеданс Zвх, МОм, не менее 8. Коэффициент ослабления синфазных сигналов Кс, не менее: для электрокардиографов для электрокардиоскопов 9. Напряжение внутренних шумов, приведенных ко входу Uш, мкВ, не более 10. Постоянная времени, с. не менее 11. Неравномерность амплитудно-частотной характеристики (АЧХ) в диапазонах частот: от 0,5 до 60 Гц, % от 60 до 75 Гц, % 12. Относительная погрешность измерения интервалов времени в диапазоне интервалов времени от 0.1 до 1.0 с,% не более 13. Скорость движения носителя записи (скорость развертки) Vн мм/с 14. Относительная погрешность установки скорости движения носителя записи (скорости развертки) ,%, в пределах: для электрокардиографов для электрокардиоскопов От 0,03 до 5 ±15 ±7 ±2 ±2.5 2.5**; 5; 10; 20; 40** ±5 40*** 100000 28000 20 3.2 от -10 до +5 от -30 до +5 ±7 25,50 допустимы и иные значения ±5 ±10

* Допускается не проверять при проведении приемо-сдаточных испытаний.

** Допускается по согласованию с заказчиком.

***Для носимых приборов по согласованию с заказчиком допускаются значения менее 40 мм.

В международном стандарте IEC 60601-2-51 “Medical electrical equipment-Part 2-51: Particular requirements for safety, including essential performance, of recording and analysing single channel and multichannel electrocardiographs”, принятом целиком в РФ требования установлены в SECTION EIGHT - ACCURACY OF OPERATING DATA AND PROTECTION AGAINST HAZARDOUS OUTPUT (см. Приложение 2).

Типовая схема электрокардиографа с активной компенсацией синфазной помехи.

Рис. 5. Типовая структура ЭКГ- канала с активной компенсацией синфазной помехи.

Рис. 6. Главная часть схемы канала ЭКГ

Кардиограф DIXION ECG-1001a

Кабель отведений пациента

Согласующее устройство

Задняя и передняя панель соответственно.

Схема установки.

Схема согласующего устройства для проверки диапазона регистрируемых сигналов, погрешности чувствительности, погрешности измерения напряжения, погрешности измерения интервалов времени, погрешности скорости движения, погрешности калибровочного сигнала, постоянной времени, АЧХ

Условные обозначения элементов схемы и их номинальные значения:

G1 – генератор сигналов специальной формы;

G2 – генератор импульсов прямоугольной формы;

R1 – 51 кОм ±5%;

R2– 100 кОм ±0,1%;

R3– 100 Ом ±0,1%;

R4– 51 Ом ±5%;

R5 – выбирают для получения напряжения на R4±(300 мВ±10%) в зависимости от напряжения источника;

R8 - 100 Ом ±5%;

C1 – 47 нФ ±10%;

Z1 - параллельно соединенные R1 и C1;

Z2 - параллельно соединенные R6 и C2;

U – источник постоянного напряжения, обеспечивающий напряжение на R4±(300±10%).

Порядок выполнения работы

Под контролем лаборанта собрать схему установки.

Перед проверкой основных параметров прибор подвергают испытанию на допустимые перегрузки по входному напряжению в каждом регистрирующем канале гармоническим сигналом размахом 1В ÷5% и частотой 50 Гц±5%, приложенным между отводящими электродами в течении времени не менее 10 с. Фильтры должны быть выключены. Испытания не должны приводить к повреждению пишущего механизма или электрической схемы прибора.

Установить скорость протяжки ленты 25 мм/с (в меню кардиографа). Это означает, что при расшифровке записей одному миллиметру вдоль ленты соответствует время t = 1/25 = 0,04 с/мм.

1. Выполнить проверку относительной погрешности установки чувствительности подавая на вход прибора прямоугольный сигнал 5 Hz ±5% и амплитудой 1 V ±2% и изменяя усиление (20, 10, 5).

Для этого:

· Из библиотеки сигналов (кнопка More Function) выбрать прямоугольный сигнал, CardTest01_05_1(0,33Hz), изображенный на рис.12.3 и задаём частоту 0,33 Hz.

· На панели генератора установить амплитуду сигнала 2 V.

· На кардиографе выбрать чувствительность равной 5mm/mV кнопкой SENS. Возможны следующие уровни чувствительности: ×1 (10mm/mV) → ×2 (20mm/mV) →AGC → · 25 (2.5mm/mV)→ · 5 (5mm/mV)).

· Запустить сигнал кнопкой RUN.

· Повторить всё, установив амплитуду 1V, и чувствительность 10mm/mV. А затем задать амплитуду 0,5V и чувствительность 20mm/mV.

· С помощью линейки и циркуля измеряем отклонение амплитуды, допустимы отклонение ±5%.

· Заносим результаты в таблицу.

2. Проверку неравномерности АЧХ проводить подачей на вход прибора гармонического сигнала в соответствие со схемой 7.1.

Неравномерность АЧХ в процентах вычисляют по формуле: δ 1 = *100,

где h о - размер размаха изображения синусоиды на записи на опорной частоте 10 Гц, мм.

h max - размер размаха изображения синусоиды на записи максимально отличающегося от h о в положительную или отрицательную стороны, мм.

Для проверки АЧХ погрешности измерения напряжения рекомендуется использовать комплексные испытательные сигналы генератора PCSGU-250, представленные на Рис.12. (1 и 2 сигнал)

Для этого:

· Из библиотеки сигналов выбрать сигнал, CardTest10_20_30_40_50_60_75_100(0,5Hz).

· Установить частоту 0,5 Hz и амплитуду 2V.

· На кардиографе устанавливаем чувствительность 10mm/mV.

· Записываем сигнал.

· С помощью линейки и циркуля измеряем h о (для 10 Hz пачки сигналов)и h max 1 (для 60 Hz пачки сигналов) и h max 2 (для 75 Hz пачки сигналов.

· Проводим расчет по формуле для 60 и 75 Hz сигналов.

· Повторяем все действия для сигнала CardTest05_2_10_25(0,25Hz), установив амплитуду 2V, частоту 0,25 Hz.

· Измеряем h о для пачки сигналов 0,5 Hz и h max для пачки сигналов 10 и 25Hz, h max 1 (для 10 Hz) и h max 2 (для 25 Hz)

· Результаты вносим в таблицу.

Отклонения АЧХ допустимы следующие: в первом сигнале для пачки 60Гц "-10%", для пачки 75Гц - "30%". Во втором сигнале ±5%.


Рис.12. Комплексные испытательные сигналы, используемые при поверке электрокардиографов.

3. Проверку постоянной времени провести в каждом канале при чувствительности 5мм/мВ подачей на вход прибора сигнала прямоугольной формы размахом 4мВ±3% длительностью менее 5 с. Постоянную времени определить по записи как время затухания сигнала до уровня 0,37согласно чертежу без учета выбросов.

Изображение переходной характеристики на записи для каждого канала должно быть монотонным, обращенным в сторону нулевой линии.

· Выбираем прямоугольный сигнал с размахом 4мВ.

· Устанавливаем чувствительность на кардиографе 5мм/мВ.

· Записываем сигнал.

· С помощью линейки измеряем максимальную амплитуду (А), затем проводим горизонтальную линию на уровне 0,37А до пересечения с линией сигнала, и измеряем τ как показано на рисунке ниже.

Таблица результатов при измерении погрешности чувствительности

Таблица результатов при проверне неравномерности АЧХ

Таблица результатов при проверне постоянной времени

τ

Выводы:

Теоретические основы

Интегральный электрический вектор сердца (ИЭВС) – это векторная сумма дипольных моментов токовых диполей по всему объему сердца. В ходе сердечного сокращения ИЭВС меняется как по величине, так и по направлению, что вызывает распространение электромагнитной энергии в пространстве.

Стандартные отведения

Эта энергия, распространяясь от сердца по многим направлениям, вызывает появление поверхностных потенциалов на коже разных в различных точках. Эта разница в потенциалах, называемая отведением, может быть зарегистрирована.

Отведение обеспечивает оценку электрической активности сердца между двумя точками (полюсами). Каждое отведение состоит из положительного (+) полюса, или активного электрода, и отрицательного (-) полюса. Между положительным и отрицательным полюсами проходит воображаемая линия, представляющая ось отведения. Поскольку отведения позволяют измерять электрический потенциал сердца с разных позиций, сигналы, регистрируемые этими отведениями, дают свою характерную для каждого отведения кривую.

Направление движения электрического сигнала определяет форму зубцов ЭКГ. Когда оно совпадает с направлением оси отведения и направлено к положительному полюсу, линия на ЭКГ отклоняется вверх («положительное отклонение»). Когда электрический ток направлен от положительного полюса к отрицательному, отклоняется вниз от изолинии («отрицательное отклонение»). Когда направление тока перпендикулярно к оси, зубцы ЭКГ направлены в любом направлении или могут быть низкими. Если электрическая активность отсутствует или слишком мала для измерения, на ЭКГ отображается прямая линия, что обозначается как изоэлектрическое отклонение.

В плоскости, проходящей через сердце вертикально от верхушки к основанию, электрические токи рассматриваются в направлении на сердце спереди. Фронтальную плоскость обеспечивают шесть отведений от конечностей (I, ІІ, ІІІ, aVR, aVL, aVF) (рис. 1).


В плоскости, проходящей горизонтально через середину сердца, направление электрических токов рассматривается сверху вниз. Такой подход обеспечивают шесть грудных отведений (V 1 -V 6) (рис. 2).

Рис. 2. Горизонтальная плоскость

отведения I, II и III (по Эйнтховену). Эти три отведения называются стандартными, или двухполюсными, отведениями от конечностей.

Для записи стандартных отведений от конечностей электроды размещают на правом предплечье, левом предплечье и левой голени. Четвертый электрод помещают на правую голень, он используется как заземление для стабилизации записи ЭКГ и не влияет на характеристику электрических сигналов, регистрируемых на ЭКГ

Эти отведения называют двухполюсными, потому что каждое имеет два электрода, которые обеспечивают одновременную запись электрических токов сердца, идущих по направлению к двум конечностям. Двухполюсные отведения позволяют измерять потенциал между положительным (+) и отрицательным (-) электродами.

Отведение I. Регистрирует электрические токи между правым (красный электрод) и левым предплечьями (желтый электрод).

Отведение II. Регистрирует электрические токи между правым предплечьем (красный электрод) и левой голенью (зеленый электрод).

Отведение III. Регистрирует электрические токи между левой голенью (зеленый электрод) и левым предплечьем (желтый электрод).

Электрод на правом предплечье всегда рассматривается в качестве отрицательного полюса, на левой голени всегда в качестве положительного. Электрод на левом предплечье может быть либо положительным, либо отрицательным в зависимости от отведения: в отведении I он положительный, а в отведении III - отрицательный.

Когда ток направлен к положительному полюсу, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный). Когда ток идет к отрицательному полюсу, зубец ЭКГ инвертирован (отрицательный). В отведении II ток распространяется от отрицательного к положительному полюсу, поэтому зубцы на обычной ЭКГ направлены вверх.

Понятие о треугольнике Эйнтховена.

Размещение электродов для регистрации отведений I, II и Ш, как показано на рис. 3, образует так называемый треугольник Эйнтховена. Каждая сторона этого равностороннего треугольника между двумя электродами соответствует одному из стандартных отведений Эйнтховен считал, что сердце расположено в центре генерируемого им электрического поля. Поэтому сердце рассматривается как центр этого равностороннего треугольника. Из треугольника Эйнтховена получается фигура с трехосевой системой координат для стандартных отведений I, II и III.

Рис. 3. Треугольник Эйнтховена

Закон Эйнтховена гласит: сумма электрических потенциалов, рёгистрируемых в любой момент в отведениях I и Ш, равна электрическому потенциалу, регистрируемому в отведении П. Этот закон может быть использован для обнаружения ошибок, допущенных при наложении электродов, выяснения причин регистрации необычных сигналов в одном из трех стандартных отведений и для оценки серийных ЭКГ.

Отведения aVR, aVL и aVF (по Голбдбергу). Эти три отведения имеют общее название усиленных однополюсных отведений от конечностей.

В этих отведениях используются те же положения электродов, что и в стандартных отведениях I, II и III, то есть электроды фиксируются на правом предплечье, левом предплечье и левой голени. Электрод, наложенный на правую голень, при записи сигналов в этих отведениях не используется.

В отведениях aVR, aVL и aVF исследуется разность электрических потенциалов между конечностями и центром сердца. Их называют однополюсными, потому что лишь один электрод используют для регистрации электрического сигнала; центр сердца всегда нейтрален, поэтому второго электрода не требуется. Обозначение усиленных отведений от конечностей происходит от первых букв английских слов «а» - augmented (усиленный), «V»-voltage (потенциал), «R»-right (правый), «L»-left (левый), «F»-foot (нога).

В связи с изложенным, все электроды в этих отведениях являются положительными. Отрицательный электрод получают путем сложения сигналов отведений I, ІІ и III, алгебраическая сумма которых равна нулю.

Эти отведения также называют усиленными, так как амплитуда комплексов увеличена на 50% по сравнению со стандартными отведениями. Запись усиленных отведений более удобна для интерпретации.

Соотношения, положенные в основу работы электрокардиографа :

UI= Uвх(L)-Uвх(R);

UII= Uвх(F)-Uвх(R);

UIII= Uвх(F)-Uвх(L);

UaVR=Uвх(R)-(Uвх(L)-Uвх(F))/2;

UaVL=Uвх(L)-(Uвх(F)-Uвх(R))/2;

UaVF=Uвх(F)-(Uвх(L)-Uвх(R))/2;

UVi= Uвх(Ci)-(Uвх(R)+Uвх(L)+Uвх(F))/3, где i=1,2,…,6.

Отведения V1- V6 (по Вильсону). Эти шесть отведений называют однополюсными сердечными, или грудными, отведениями. Их обозначают буквой V, а точки съёма положительных потенциалов j (и соответствующие провода кабеля отведений) - буквой С с номером, соответствующим положению электрода (рис. 4). Отрицательный потенциал берётся с точки, потенциал которой формируется в соответствии с соотношением (j R +j L +j F)/3.

Электроды располагают в следующих точках:

С(V)1 - в четвертом межреберье по правому краю грудины (красный электрод);

С(V)2 - в четвертом межреберье по левому краю грудины (желтый электрод);

C(V)3 - посредине линии, соединяющей точки V2 и V4 (зеленый электрод);

C(V)4 - в пятом межреберье по левой срединно-ключичной линии (коричневый электрод);

C(V)5 - в пятом межреберье по левой передней подмышечной линии (черный электрод);


C(V)6 - в пятом межреберье по левой средней подмышечной линии (фиолетовый электрод).

Рис. 4. Отведения по Вильсону

В грудных отведениях измеряется разность электрических потенциалов между электродами, размещенными на груди, и центральным терминалом. Грудные электроды в любом из отведений V всегда положительны. Отрицательный электрод получают за счет сложения сигналов отведений I, II и III, алгебраическая сумма которых равна нулю.

Электроды накладывают (смотрите рисунок) на правой руке (красная марки­ровка), левой руке (желтая маркировка) и на левой ноге (зеленая марки­ровка). Эти электроды по­парно подключаются к электрокардиографу для регистрации каждого из трех стан­дартных отведений. Четвертый электрод устанавливается на правую ногу для под­ключения заземляющего провода (черная маркировка)

Стандартные отведения от конечностей регистрируют при следую­щем попарном подключении электродов:
I отведение - левая рука (+) и правая рука (-);
II отведение - левая нога (+) и правая рука (-);
III отведение - левая нога (+) и левая рука (-).
Как видно на рисунке выше, три стандартных отведения образуют равносто­ронний треугольник (треугольник Эйнтховена), в центре кото­рого расположен электрический центр сердца, или единый сердечный диполь. Перпендикуляры, проведенные из центра сердца, т.е. из места расположения единого сердечного диполя, к оси каждого стандартного отведения, делят каждую ось на две равные части: положительную, об­ращенную в сторону положительного (активного) электрода (+) отведе­ния, и отрицательную, обращенную к отрицательному электроду (-)

Усиленные отведения ЭКГ от конечностей

Усиленные отведения от конечностей регистрируют разность по­тенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения, и средним потенциалом двух других конечностей (см. рисунок ниже). В ка­честве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольд­бергера, который образуется при соединении через дополнительное со­противление двух конечностей.
Три усиленных однополюсных отведения от конечностей обозна­чают следующим образом:
aVR - усиленное отведение от правой руки;
aVL - усиленное отведение от левой руки;
aVF - усиленное отведение от левой ноги.
Как видно на рисунке ниже, оси усиленных однополюсных отведе­ний от конечностей получают, соединяя электрический центр сердца с местом наложе­ния активного электрода данного отведения, т.е. факти­чески - с одной из вер­шин треугольника Эйнтховена.


Формирование трех усиленных однополюсных отведе­ний от конечностей. Внизу - треугольник Эйнтховена и расположение осей трех усиленных однополюсных отведений от конечностей

Электрический центр сердца как бы делит оси этих отведений на две равные части: положительную, обращенную к активному элек­троду, и отрицательную, обращенную к объединенному электроду Гольдбергера

Сначала записывают отведения от конечностей. Металлические электроды электрокардиографа накладывают на руки и ноги больного. Электрод на правой ноге выполняет роль электрического заземления. Электроды на руках прикрепляют чуть выше запястий, на ногах — выше лодыжек.

Рис. 3-3. Для записи электрокардиограммы используют металлические электроды. Электрод на правой ноге выполняет функцию заземления, чтобы предотвратить помехи от сети переменного тока.

Электрические процессы сердца можно проецировать на туловище и конечности. По этой причине электрод, помещённый на правое запястье, регистрирует такое же электрическое напряжение, как и на правом плече; напряжение на левом запястье или другом участке левой руки соответствует напряжению на левом плече.

Наконец, напряжение на электроде, наложенном на левую ногу, сопоставимо с напряжением на левом бедре или в паховой области. В клинической практике электроды присоединяют к запястьям и лодыжкам просто для удобства. Очевидно, для регистрации электрокардиограммы у больного с ампутацией конечности или с гипсовой повязкой необходимо разместить электроды около плеч или паха, в зависимости от обстоятельств.

Выделяют стандартные биполярные (I, II, III) и . Биполярные отведения были названы так исторически, так как они регистрируют разность электрических потенциалов между двумя конечностями.

Подключение электродов стандартных отведений от конечностей

I отведение, например, записывает разницу напряжений между электродами на левой руке и правой руке:

I отведение = левая рука - правая рука.

II отведение регистрирует разницу напряжений между электродами на левой ноге и правой руке:

II отведение = левая нога - правая рука.

III отведение позволяет оценить разницу напряжений между электродами на левой ноге и левой руке:

III отведение = левая нога - левая рука.

При записи I отведения происходит следующее. Электрод левой руки измеряет электрическое возбуждение сердца с вектором, направленным к левой руке, а электрод правой руки — с вектором, направленным к правой руке. Электрокардиограф регистрирует разность потенциалов между левой рукой и правой рукой и показывает её в I отведении. При записи II отведения то же самое происходит с потенциалами электродов левой ноги и правой руки, а при записи III отведения — левой ноги и левой руки.

I, II и III отведения можно представить схематично в виде треугольника, названного треугольником Эйнтховена по имени голландского физиолога, который изобрёл электрокардиограф в начале 1900-х годов. Сначала ЭКГ состояла только из записи I, II, и III отведений. Треугольник Эйнтховена отражает пространственное расположение трех стандартных отведении от конечностей (I, II, III).

Рис. 3-4. Расположение I, II и III отведений. (I отведение регистрирует разность электрических потенциалов между левой и правой руками, II отведение - между левой ногой и правой рукой, III отведение - между левой ногой и левой рукой.)

Проекция I отведения расположена горизонтально. Левый полюс (левая рука) I отведения положительный, а правый полюс (правая рука) — отрицательный, поэтому I отведение = левая рука - правая рука. Проекция II отведения направлена по диагонали вниз. Его нижний полюс (левая нога) положительный, а верхний полюс (правая рука) — отрицательный, поэтому II отведение = левая нога - правая рука. Проекция III отведения также направлена диагонально вниз. Его нижний полюс (левая нога) положительный, а верхний полюс (левая рука) — отрицательный, поэтому III отведение = левая нога - левая рука.

Эйнтховен, конечно, мог обозначить отведения по-другому. В данном виде биполярные отведения описывает следующая простая формула:

I отведение + III отведение = II отведение.

Другими словами, если сложить величины вольтажа зубцов I и III отведений, мы получим вольтаж во II отведении. Это лишь приблизительное правило. Оно выполнимо при одновременной регистрации трёх стандартных отведений с использованием синхронизированного канала электрокардиографа, поскольку пики зубцов R в трёх отведениях не одновременны.

Эту формулу можно проверить. Сложив вольтаж зубца R в I отведении (+9 мм) и зубца R в III отведении (+4 мм), получим +13 мм — вольтаж зубца R во II отведении. То же самое можно сделать с зубцами и .

При оценке электрокардиограммы полезно сначала быстро просмотреть I, II и III отведения. Если зубец R во II отведении не равен сумме зубцов R в I и III отведениях, возможно, запись неверна или электроды наложены неправильно.

Уравнение Эйнтховена — результат записи биполярных отведений. Электрический потенциал от электрода на левой руке положительный в отведении I и отрицательный в отведении III, равновесие наступает при добавлении двух других отведений:

I отведение = левая рука - правая рука;

II отведение = левая нога - левая рука;

I отведение + III отведение = левая нога - правая рука = II отведение.

Таким образом, в ЭКГ один плюс три равно двум.

Итак, I, II и III отведения — стандартные (биполярные) отведения от конечностей, которые изобретены раньше других . Эти отведения регистрируют разность электрических потенциалов между выбранными конечностями.

На рисунке треугольник Эйнтховена изображён так, что I, II и III отведения пересекаются в центральной точке. Для этого I отведение просто передвинули вниз, II — вправо, III — влево. В результате получают трёхмерную диаграмму. Эту диаграмму, представляющую три биполярных отведения, используют в разделе « ».

Понравилась статья? Поделитесь с друзьями!