Строение и химические свойства алканов. Физические и химические свойства алканов

Строение алканов

Алканы - углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2n+2 . В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации .

Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторон­ней треугольной пирамиды - тетраэдра . Углы между орбиталями равны 109° 28′. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), напри­мер, в молекуле н-пентан.

Особо стоит напомнить о связях в молекулах ал­канов. Все связи в молекулах предельных углеводо­родов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это σ-связи . Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 10 м). Связи С-Н несколько коро­че. Электронная плотность немного смещена в сто­рону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной .

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Предельные углеводороды составляют гомоло­гический ряд метана.

Изомерия и номенклатура алканов

Для алканов характерна так называемая струк­турная изомерия . Структурные изомеры отлича­ются друг от друга строением углеродного скеле­та. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Рассмотрим подробнее для алканов основы но­менклатуры ИЮПАК .

1. Выбор главной цепи . Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

2. Нумерация атомов главной цепи . Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном уда­лении от конца цепи, то нумерация начинается от того конца, при котором их больше (структу­ра В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе стар­ший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начи­нается их название: метил (-СН 3), затем пропил (-СН 2 -СН 2 -СН 3), этил (-СН 2 -СН 3) и т. д.

Обратите внимание на то, что название заме­стителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соот­ветствующий номер в названии повторяется дваж­ды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и на­звание заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан, этан, пропан и т. д.).

Названия веществ, структурные формулы кото­рых приведены выше, следующие:

Структура А: 2-метилпропан;

Структура Б: 3-этилгексан;

Структура В: 2,2,4-триметилпентан;

Структура Г: 2-метил 4-этилгексан.

Отсутствие в молекулах предельных углеводоро­дов полярных связей приводит к тому, что они плохо растворяются в воде , не вступают во взаимодействие с заряженными частицами (ионами) . Наиболее ха­рактерными для алканов являются реакции, проте­кающие с участием свободных радикалов .

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы . Простейший из них - ме­тан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, опреде­ляется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных га­зовых приборах для того, чтобы люди, находя­щиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С 5 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые ве­щества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются рас­пространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.

Наиболее характерными для алканов являются реакции свободнорадикаль­ного замещения , в ходе которого атом водорода за­мещается на атом галогена или какую-либо группу.

Приведем уравнения характерных реакций галогенирования :

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор :

Полученные вещества широко используются как растворители и исходные вещества в органи­ческих синтезах.

Реакция дегидрирования (отщепления водоро­да).

В ходе пропускания алканов над катализато­ром (Pt, Ni, Al 2 O 3 , Cr 2 O 3) при высокой температуре (400-600 °C) происходит отщепление молекулы во­дорода и образование алкена :

Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Га­зообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.

1. Горение предельных углеводородов - это сво­боднорадикальная экзотермическая реакция, кото­рая имеет очень большое значение при использова­нии алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов .

Процесс протекает по свободнорадикальному механизму . Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием мо­лекулы алкана и молекулы алкена :

Реакции термического расщепления лежат в ос­нове промышленного процесса - крекинга угле­водородов . Этот процесс является важнейшей ста­дией переработки нефти.

3. Пиролиз . При нагревании метана до темпе­ратуры 1000 °С начинается пиролиз метана - раз­ложение на простые вещества:

При нагревании до температуры 1500 °С воз­можно образование ацетилена :

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хло­ридом алюминия) происходит образование веществ с разветвленным углеродным скелетом :

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии ка­тализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ по­строены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (элек­тростатических полей ионов). Следовательно, алка­ны не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Алканами в химии называют предельные углеводороды, у которых углеродная цепь является незамкнутой и состоит из углерода, связанных друг с другом при помощи одинарных связей. Также характерной особенностью алканов есть то, что они совсем не содержат двойных либо тройных связей. Порой алканы называют парафинами, дело в том, что парафины собственно и являются смесью предельных углеродов, то есть алканов.

Формула алканов

Формулу алкана можно записать как:

При этом n больше или равно 1.

Алканам свойственна изомерия углеродного скелета. При этом соединения могут принимать разные геометрические формы, как например это показано на картинке ниже.

Изомерия углеродного скелета алканов

С увеличением роста углеродной цепи увеличивается и количество изомеров. Так, например, у бутана есть два изомера.

Получение алканов

Алкан как правило получают различными синтетическими методами. Скажем, один из способов получения алкана предполагает реакцию «гидрирования», когда алканы добываются из ненасыщенных углеводов под воздействием катализатора и при температуре.

Физические свойства алканов

Алканы от других веществ отличаются полным отсутствием цвета, также они не растворим в воде. Температура плавления алканов повышается с увеличением их молекулярной массы и длины углеводородной цепи. То есть чем более разветвленным является алкан, тем у него большая температура горения и плавления. Газообразные алканы и вовсе горят бледно-голубым или бесцветным пламенем, при этом выделяя много тепла.

Химические свойства алканов

Алканы в химическом плане малоактивные вещества, по причине прочности крепких сигма связей С-С и С-Н. При этом связи С-С неполярны, а С-Н малополярны. А так как все это малополяризируемые виды связей, которые относятся к сигма виду, то разрываться они будут по механизму гомолитическому, в результате чего образуются радикалы. И как следствия химические свойства алканов представляют собой в основном реакции радикального замещения.

Так выглядит формула радикального замещения алканов (галогенирование алканов).

Помимо этого также можно выделить такие химические реакции как нитрирование алканов (реакция Коновалова).

Реакция эта протекает при температуре 140 С, причем лучше всего именно с третичным атомом углерода.

Крекинг алканов – эта реакция протекает при действии высоких температур и катализаторов. Тогда создаются условия, когда высшие алканы могут рвать свои связи образуя алканы более низкого порядка.

Алканы - соединения гомологического ряда метана. Это насыщенные нециклические углеводороды. Химические свойства алканов зависят от строения молекулы и физического состояния веществ.

Строение алканов

Молекула алкана состоит из атомов углерода и водорода, которые образуют метиленовые (-CH 2 -) и метильные (-CH 3) группы. Углерод может создавать четыре ковалентные неполярные связи с соседними атомами. Именно наличие прочных σ-связей -С-С- и -С-Н обуславливает инертность гомологического ряда алканов.

Рис. 1. Строение молекулы алкана.

Соединения реагируют на свету или при нагревании. Реакции протекают по цепному (свободно-радикальному) механизму. Таким образом, связи способны расщепляться только под действием свободных радикалов. В результате замещения водорода образуются галогеналканы, соли, циклоалканы.

Алканы относятся к предельным или насыщенным углеродам. Это значит, что молекулы содержат максимальное количество атомов водорода. Из-за отсутствия свободных связей реакции присоединения для алканов не характерны.

Химические свойства

Общие свойства алканов приведены в таблице.

Типы химических реакций

Описание

Уравнение

Галогенирование

Реагируют с F 2 , Cl 2 , Br 2 . Реакция с йодом не идёт. Галогены замещают атом водорода. Реакция с фтором сопровождается взрывом. Хлорирование и бромирование происходит при температуре 300-400°C. В результате образуются галогеналканы

CH 4 + Cl 2 → CH 3 Cl + HCl

Нитрование (реакция Коновалова)

Взаимодействие с разбавленной азотной кислотой при температуре 140°C. Атом водорода замещается нитрогруппой NO 2 . В результате образуются нитроалканы

CH 3 -CH 3 +HNO 3 → CH 3 -CH 2 -NO 2 + H 2 O

Сульфохлорирование

Сопровождается окислением с образованием алкансульфонилхлоридов

R-H + SO 2 + Cl 2 → R-SO 3 Cl + HCl

Сульфоокисление

Образование алкансульфоновых кислот в избытке кислорода. Атом водорода замещается группой SO 3 H

C 5 H 10 + HOSO 3 H → C 5 H 11 SO 3 H + H 2 O

Происходит в присутствии катализатора при высоких температурах. В результате разрыва связей С-С образуются алканы и алкены

C 4 H 10 → C 2 H 6 + C 2 H 4

В избытке кислорода происходит полное окисление до углекислого газа. При недостатке кислорода происходит неполное окисление с образованием угарного газа, сажи

CH 4 + 2O 2 → CO 2 + 2H 2 O;

2CH 4 + 3O 2 → 2CO + 4H 2 O

Каталитическое окисление

Происходит частичное окисление алканов при небольшой температуре и в присутствии катализаторов. Могут образовываться кетоны, альдегиды, спирты, карбоновые кислоты

C 4 H 10 → 2CH 3 COOH + H 2 O

Дегидрирование

Отщепление водорода в результате разрыва связей С-Н в присутствии катализатора (платины, оксида алюминия, оксида хрома) при температуре 400-600°С. Образуются алкены

C 2 H 6 → C 2 H 4 + H 2

Ароматизация

Реакция дегидрирования с образованием циклоалканов

C 6 H 14 → C 6 H 6 + 4H 2

Изомеризация

Образование изомеров под действием температуры и катализаторов

C 5 H 12 → CH 3 -CH(CH 3)-CH 2 -CH 3

Чтобы понимать, как проходит реакция и какие радикалы замещаются, рекомендуется записывать структурные формулы.

Рис. 2. Структурные формулы.

Применение

Алканы широко применяются в промышленной химии, косметологии, строительстве. Из соединений изготавливают:

  • топливо (бензин, керосин);
  • асфальт;
  • смазочные масла;
  • вазелин;
  • парафин;
  • мыло;
  • лаки;
  • краски;
  • эмали;
  • спирты;
  • синтетические ткани;
  • каучук;
  • адьдегиды;
  • пластмассы;
  • моющие средства;
  • кислоты;
  • пропелленты;
  • косметические средства.

Рис. 3. Продукция, получаемая из алканов.

Что мы узнали?

Узнали о химических свойствах и применении алканов. Из-за прочных ковалентных связей между атомами углерода, а также между атомами углерода и водорода, алканы проявляют инертность. Возможны реакции замещения и разложения в присутствии катализатора при высоких температурах. Алканы - предельные углеводороды, поэтому реакции присоединения невозможны. Алканы используются для производства материалов, моющих средств, органических соединений.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 227.

Ациклические углеводороды называются алканами. Всего насчитывается 390 алканов. Самую длинную структуру имеет нонаконтатриктан (C 390 H 782). К атомам углерода могут присоединяться галогены, образуя галогеналканы.

Строение и номенклатура

По определению алканы - предельные или насыщенные углеводороды, имеющие линейную или разветвлённую структуру. Также называются парафинами. Молекулы алканов содержат только одинарные ковалентные связи между атомами углерода. Общая формула -

Чтобы назвать вещество, необходимо соблюсти правила. По международной номенклатуре названия формируются с помощью суффикса -ан. Названия первых четырёх алканов сложились исторически. Начиная с пятого представителя, названия составляются из приставки, обозначающей количество атомов углерода, и суффикса -ан. Например, окта (восемь) образует октан.

Для разветвлённых цепей названия складываются:

  • из цифр, указывающих номера атомов углерода, около которых стоят радикалы;
  • из названия радикалов;
  • из названия главной цепи.

Пример: 4-метилпропан - у четвёртого атома углерода в цепи пропана находится радикал (метил).

Рис. 1. Структурные формулы с названиями алканов.

Каждый десятый алкан даёт называние следующим девяти алканам. После декана идут ундекан, додекан и далее, после эйкозана - генэйкозан, докозан, трикозан и т.д.

Гомологический ряд

Первый представитель - метан, поэтому алканы также называют гомологическим рядом метана. В таблице алканов указаны первые 20 представителей.

Название

Формула

Название

Формула

Тридекан

Тетрадекан

Пентадекан

Гексадекан

Гептадекан

Октадекан

Нанадекан

Начиная с бутана, все алканы имеют структурные изомеры. К названию прибавляется приставка изо-: изобутан, изопропан, изогексан.

Рис. 2. Примеры изомеров.

Физические свойства

Агрегатное состояние веществ меняется в списке гомологов сверху вниз. Чем больше содержится атомов углерода и, соответственно, чем больше молекулярная масса соединений, тем выше температура кипения и твёрже вещество.

Остальные вещества, содержащие больше 15 атомов углерода, находятся в твёрдом состоянии.

Газообразные алканы горят голубым или бесцветным пламенем.

Получение

Алканы, как и другие классы углеводородов, получают из нефти, газа, каменного угля. Для этого используют лабораторные и промышленные методы:

  • газификация твёрдого топлива:

    C + 2H 2 → CH 4 ;

  • гидрирование оксида углерода (II):

    CO + 3H 2 → CH 4 + H 2 O;

  • гидролиз карбида алюминия:

    Al 4 C 3 + 12H 2 O → 4Al(OH) 3 + 3CH 4 ;

  • реакция карбида алюминия с сильными кислотами:

    Al 4 C 3 + H 2 Cl → CH 4 + AlCl 3 ;

  • восстановление галогеналканов (реакция замещения):

    2CH 3 Cl + 2Na → CH 3 -CH 3 + 2NaCl;

  • гидрирование галогеналканов:

    CH 3 Cl + H 2 → CH 4 + HCl;

  • сплавление солей уксусной кислоты со щелочами (реакция Дюма):

    CH 3 COONa + NaOH → Na 2 CO 3 + CH 4 .

Алканы можно получить гидрированием алкенов и алкинов в присутствии катализатора - платины, никеля, палладия.

Химические свойства

Алканы вступают в реакции с неорганическими веществами:

  • горение:

    CH 4 + 2O 2 → CO 2 + 2H 2 O;

  • галогенирование:

    CH 4 + Cl 2 → CH 3 Cl + HCl;

  • нитрирование (реакция Коновалова):

    CH 4 + HNO 3 → CH 3 NO 2 + H 2 O;

  • присоединение:

Одним из первых типов химических соединений, изучаемых в школьной программе по органической химии, являются алканы. Они относятся к группе предельных (иначе - алифатических) углеводородов. В их молекулах присутствуют только одинарные связи. Атомам углерода свойственна sp³-гибридизация.

Гомологами называют химические вещества, которые имеют общие свойства и химическое строение, но при этом отличающиеся на одну или несколько CH2-групп.

В случае с метаном CH4 можно привести общую формулу для алканов: CnH (2n+2), где n - это количество атомов углерода в соединении.

Приведём таблицу алканов, в которых n находится в пределах от 1 до 10.

Изомерия алканов

Изомерами называют те вещества, молекулярная формула которых совпадает, однако строение или структура отличается.

Для класса алканов характерны 2 типа изомерии: углеродного скелета и оптическая изомерия.

Приведём пример структурного изомера (т. е. вещества, отличающимся лишь строением углеродного скелета) для бутана C4H10.

Оптическими изомерами называют такие 2 вещества, молекулы которых имеют похожую структуру, но не могут быть совмещены в пространстве. Явление оптической или зеркальной изомерии возникает у алканов, начиная с гептана C7H16.

Чтобы дать алкану правильное название, необходимо воспользоваться номенклатурой ИЮПАК . Для этого использоваться следующая последовательность действий:

По приведённому выше плану попробуем дать название следующему алкану.

В обычных условиях неразветвленные алканы с CH4 до C4H10 - это газообразные вещества, начиная с С5Н12 и до C13H28 - жидкие и обладающие специфическим запахом, все последующие - твёрдые. Получается, что с увеличением длины углеродной цепи растут температуры кипения и плавления . Чем сильнее разветвлена структура алкана, тем при более низкой температуре он кипит и плавится.

Газообразные алканы не обладают цветом. А также все представители этого класса не могут растворяться в воде.

Алканы, имеющие агрегатное состояние газа, могут гореть , при этом пламя будет либо бесцветным, либо обладать бледно-голубым оттенком.

Химические свойства

В обычных условиях алканы достаточно малоактивны. Это объясняется прочностью σ-связей между атомами C-C и C-H. Поэтому необходимо обеспечить специальные условия (например, довольно высокую температуру или свет), чтобы проведение химической реакции стало возможным.

Реакции замещения

К реакциям этого типа относятся галогенирование и нитрование. Галогенирование (взаимодействие с Cl2 или Br2) происходит при нагревании или же под воздействием света. Во время реакции, протекающей последовательно, образуются галогеналканы.

Для примера можно записать реакцию хлорирования этана.

Бромирование будет проходить аналогичным образом.

Нитрование - это реакция со слабым (10%) раствором HNO3 или с оксидом азота (IV) NO2. Условия для проведения реакций - температура 140 °C и давление.

C3H8 + HNO3 = C3H7NO2 + H2O.

В результате образуются два продукта - вода и аминокислота.

Реакции разложения

При проведении реакций разложения всегда требуется обеспечивать высокую температуру. Это необходимо для разрыва связей между атомами углерода и водорода .

Так, при проведении крекинга потребуется температура в интервале от 700 до 1000 °C . Во время реакции разрушаются -С-С- связи, образуется новый алкан и алкен:

C8H18 = C4H10 + C4H8

Исключение - крекинг метана и этана. В результате этих реакций выделяется водород и образуется алкин ацетилен. Обязательным условием является нагревание до 1500 °C.

C2H4 = C2H2 + H2

Если превысить температуру в 1000 °C, можно добиться пиролиза с полным разрывом связей в соединении:

Во время пиролиза пропила был получен углерод C, а также выделился водород H2.

Реакции дегидрирования

Дегидрирование (отщепление водорода) происходит по-разному для различных алканов. Условия проведения реакции - температура в пределах от 400 до 600 °C, а также присутствие катализатора, в роли которого могут выступать никель или платина.

Из соединения, в углеродном скелете которого 2 или 3 атома C, образуется алкен:

C2H6 = C2H4 + H2.

Если в цепи молекулы 4-5 атомов углерода, то после дегидрирования получится алкадиен и водород.

C5H12 = C4H8 + 2H2.

Начиная с гексана, во время реакции образуется бензол или производные от него вещества.

C6H14 = C6H6 + 4H2

Следует также упомянуть реакцию конверсии, проводящуюся для метана при температуре 800 °C и в присутствии никеля:

CH4 + H2O = CO + 3H2

Для других алканов конверсия нехарактерна.

Окисление и горение

Если алкан, нагретый до температуры не более 200 °C, будет взаимодействовать с кислородом в присутствии катализатора, то в зависимости от прочих условий проведения реакции будут различаться получаемые продукты: это могут быть представители классов альдегидов, карбоновых кислот, спиртов или кетонов.

В случае полного окисления алкан сгорает до конечных продуктов - воды и CO2:

C9H20 + 14O2 = 9CO2 + 10H2O

Если во время окисления количество кислорода оказалось недостаточным, конечным продуктом вместо углекислого газа станет уголь или CO.

Проведение изомеризации

Если обеспечить температуру около 100-200 градусов, для неразветвленных алканов становится возможна реакция перегруппировки. Второе обязательное условие для проведения изомеризации - присутствие катализатора AlCl3. В таком случае происходит изменение структуры молекул вещества и образуется его изомер.

Значительную долю алканов получают, выделяя их из природного сырья . Чаще всего перерабатывают природный газ, главным компонентом, которого является метан или же подвергают крекингу и ректификации нефть.

А также следует вспомнить о химических свойствах алкенов. В 10 классе одним из первых лабораторных способов, изучаемых на уроках химии, является гидрирование непредельных углеводородов.

C3H6 + H2 = C3H8

Например, в результате присоединения водорода к пропилену получается единственный продукт - пропан.

При помощи реакции Вюрца из моногалогеналканов получают алканы, в структурной цепи которых число углеродных атомов удвоено:

2CH4H9Br + 2Na = C8H18 + 2NaBr.

Ещё один способ получения - взаимодействие соли карбоновой кислоты со щёлочью при нагревании:

C2H5COONa + NaOH = Na2CO3 + C2H6.

Кроме того, метан иногда получают в электрической дуге (C + 2H2 = CH4) или при взаимодействии карбида алюминия с водой:

Al4C3 + 12H2O = 3CH4 + 4Al (OH)3.

Алканы широко применяются в промышленности в качестве низкого по стоимости топлива. А также их используют как сырьё для синтеза других органических веществ. С этой целью обычно применяют метан, необходимый для и синтез-газа. Некоторые другие предельные углеводороды используют, чтобы получать синтетические жиры, а также как основу для смазочных материалов.

Для наилучшего понимания темы «Алканы» создан не один видеоурок, в котором подробно рассмотрены такие темы, как структура вещества, изомеры и номенклатура, а также показаны механизмы химических реакций.

Понравилась статья? Поделитесь с друзьями!