Углерод газообразное вещество. Физические и химические свойства углерода

Углерод (лат. Carboneum), С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12 С (98,892%) и 13 С (1,108%). Из радиоактивных изотопов наиболее важен 14 С с периодом полураспада(Т ½ = 5,6·10 3 лет). Небольшие количества 14 С (около 2·10 -10 % по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 N. По удельной активности изотопа 14 С в остатках биогенного происхождения определяют их возраст. 14 С широко используется в качестве изотопного индикатора.

Историческая справка. Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.

В 1778 году К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 году Лавуазье. Латинское название сагboneum Углерод получил от carbo - уголь.

Распространение Углерода в природе. Среднее содержание Углерода в земной коре 2,3·10 -2 % по массе (1·10 -2 в ультраосновных, 1·10 -2 - в основных, 2·10 -2 - в средних, 3·10 -2 - в кислых горных породах). Углерод накапливается в верхней части земной коры (биосфере): в живом веществе 18% Углерода, древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть Углерода литосферы сосредоточена в известняках и доломитах.

Число собственных минералов Углерода - 112; исключительно велико число органических соединений Углерода - углеводородов и их производных.

С накоплением Углерода в земной коре связано накопление и многих других элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т. д. Большую геохимическую роль в земной коре играют СО 2 и угольная кислота. Огромное количество СО 2 выделяется при вулканизме - в истории Земли это был основные источник Углерода для биосферы.

По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает Углерод из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.

Огромное геохимическое значение имеет круговорот Углерода.

Углерод широко распространен также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

Физические свойства Углерода. Известны несколько кристаллических модификаций Углерода: графит, алмаз, карбин, лонсдейлит и другие. Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а = 2,462Å, c = 6,701Å. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2) графит термодинамически стабилен. Алмаз - очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а = 3,560Å. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется. Жидкий Углерод может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2) и температурах выше 3700 °С. Для твердого Углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемых "аморфный" Углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей "аморфного" Углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" Углерод очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность "аморфного" Углерода всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9-2 г/см 3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно.

Химические свойства Углерода. Конфигурация внешней электронной оболочки атома Углерода 2s 2 2p 2 . Для Углерода характерно образование четырех ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp 3 . Поэтому Углерод способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счет sp 3 -, sp 2 - и sp- гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов Углерода и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами Углерода.

Уникальная способность атомов Углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений Углерода, изучаемых органической химией.

В соединениях Углерод проявляет степени окисления -4; +2; +4. Атомный радиус 0,77Å, ковалентные радиусы 0,77Å, 0,67Å, 0,60Å соответственно в одинарной, двойной и тройной связях; ионный радиус С 4- 2,60Å, С 4+ 0,20Å. При обычных условиях Углерод химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: "аморфный" Углерод, графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500 °С, 600-700 °С и 850-1000 °С с образованием оксида углерода (IV) СО 2 и оксида углерода (II) СО.

СО 2 растворяется в воде с образованием угольной кислоты. В 1906 году О. Дильс получил недооксид Углерода С 3 О 2 . Все формы Углерода устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO 3 и КСlO 3 и других). "Аморфный" Углерод реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение Углерода с хлором происходит в электрической дуге; с бромом и иодом Углерод не реагирует, поэтому многочисленные галогениды углерода синтезируют косвенным путем. Из оксигалогенидов общей формулы СОХ 2 (где X - галоген) наиболее известна хлороксид СОСl (фосген). Водород с алмазом не взаимодействует; с графитом и "аморфным" Углеродом реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600-1000 °С образуется в основном метан СН 4 , при 1500-2000 °С - ацетилен С 2 Н 2 ; в продуктах могут присутствовать также других углеводороды, например этан С 2 Н 6 , бензол С 6 Н 6 . Взаимодействие серы с "аморфным" Углеродом и графитом начинается при 700-800 °С, с алмазом при 900-1000 °С; во всех случаях образуется сероуглерод CS 2 . Другие соединения Углерода, содержащие серу (тиооксид CS, тионедооксид С 3 S 2 , серооксид COS и тиофосген CSCl 2), получают косвенным путем. При взаимодействии CS 2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие Углерода с азотом с получением циана (CN) 2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений Углерода важное практическое значение имеют цианистый водород HCN (Синильная кислота) и его многочисленные производные: цианиды, галогенцианы, нитрилы и других При температурах выше 1000 °С Углерод взаимодействует со многими металлами, давая карбиды. Все формы Углерода при нагревании восстанавливают оксиды металлов с образованием свободных металлов (Zn, Cd, Cu, Рb и других) или карбидов (СаС 2 , Мо 2 С, WC, ТаС и других). Углерод реагирует при температурах выше 600-800 °С с водяным паром и углекислым газом (Газификация топлив). Отличительной особенностью графита является способность при умеренном нагревании до 300-400 °С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа С 8 Ме, С 24 Ме, С 8 Х (где X - галоген, Me - металл). Известны соединения включения графита с HNO 3 , H 2 SO 4 , FeCl 3 и другие (например, бисульфат графита C 24 SO 4 H 2). Все формы Углерода нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).

Народнохозяйственное значение Углерода определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и других.

Углерод в организме. Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и другие). Значительная часть необходимой организмам энергии образуется в клетках за счет окисления Углерода. Возникновение жизни на Земле рассматривается в современное науке как сложный процесс эволюции углеродистых соединений.

Уникальная роль Углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один других элемент периодической системы. Между атомами Углерода, а также между Углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность Углерода образовывать 4 равнозначные валентные связи с других атомами Углерода создает возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - С, О и Н - составляют 98% общей массы живых организмов. Этим достигается определенная экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома Углерода лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

Согласно общепринятой гипотезе А. И. Опарина, первые органических соединения на Земле имели абиогенное происхождение. Источниками Углерода служили метан (СН 4) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического Углерода, за счет которого образуется все органическое вещество биосферы, является оксид углерода (IV) (СО 2), находящийся в атмосфере, а также растворенный в природных водах в виде НСО 3 . Наиболее мощный механизм усвоения (ассимиляции) Углерода (в форме СО 2) - фотосинтез - осуществляется повсеместно зелеными растениями (ежегодно ассимилируется около 100 млрд. т СО 2). На Земле существует и эволюционно более древний способ усвоения СО 2 путем хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют Углерод с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и других питательных веществ микроорганизмов, использующих в качестве единственного источника Углерода углеводороды нефти, - одна из важных современное научно-технических проблем.

Содержание Углерода в живых организмах в расчете на сухое вещество составляет: 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов, в основные за счет тканевого дыхания, происходит окислительный распад органических соединений с выделением во внешнюю среду СО 2 . Углерод выделяется также в составе более сложных конечных продуктов обмена веществ. После гибели животных и растений часть Углерода вновь превращается в СО 2 в результате осуществляемых микроорганизмами процессов гниения. Таким образом происходит круговорот Углерода в природе. Значительная часть Углерода минерализуется и образует залежи ископаемого Углерода: каменные угли, нефть, известняки и другие. Помимо основной функции - источника Углерода - СО 2 , растворенная в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе СаСО 3 Углерод образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и других Такие соединения Углерода, как HCN, СО, ССl 4 , преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.

Помимо стабильных изотопов Углерода, в природе распространен радиоактивный 14 С (в организме человека его содержится около 0,1 мккюри). С использованием изотопов Углерода в биологических и медицинских исследованиях связаны многие крупные достижения в изучении обмена веществ и круговорота Углерод в природе. Так, с помощью радиоуглеродной метки была доказана возможность фиксации Н 14 СО 3 - растениями и тканями животных, установлена последовательность реакций фотосинтеза, изучен обмен аминокислот, прослежены пути биосинтеза многих биологически активных соединений и т. д. Применение 14 С способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 С в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

Углерод (химический символ - C) - химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6, атомная масса природной смеси изотопов 12,0107 г/моль.

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C.

Изотопы:
Природный углерод состоит из двух стабильных изотопов - 12С (98,892 %) и 13С (1,108 %) и одного радиоактивного изотопа 14С (β-излучатель, Т½= 5730 лет) , сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14N (n, p) 14C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.
На образовании и распаде 14С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропия:
Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

Тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp3-гибридизация) . Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

Тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация) . Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
- дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация) . При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию - карбин.

Степени окисления +4, −4, редко +2 (СО, карбиды металлов) , +3 (C2N2, галогенцианы) ; сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С0 к С4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Химические свойства углерода
Взаимодействие с фтором
Углерод обладает низкой реакционной способностью, из галогенов реагирует только с фтором:

С + 2F2 = CF4.

Взаимодействие с кислородом
При нагревании взаимодействует с кислородом:

2С + О2 = 2СО,

С + О2 = СО2,

образуя оксиды СО и СО2.

Взаимодействие с другими неметаллами
Реагирует с серой:

не взаимодействует с азотом и фосфором.

Реагирует с водородом в присутствии никелевого катализатора, образуя метан:

Взаимодействие с металлами
Способен взаимодействовать с металлами, образуя карбиды:
Ca + 2C = CaC2.

Взаимодействие с водой
При пропускании водяных паров через раскаленный уголь образуется оксид углерода (II) и водород:
C + H2O = CO + H2.

Восстановительные свойства
Углерод способен восстанавливать многие металлы из их оксидов:
2ZnO + C = 2Zn + CO2.

Концентрированные серная и азотная кислоты при нагревании окисляют углерод до оксида углерода (IV):

C + 2H2SO4 = CO2 + 2SO2 + 2H2O;
C + 4HNO3 = CO2 + 4NO2 + 2H2O.

Углерод — это, пожалуй, основной и самый удивительный химический элемент на Земле, ведь с его помощью формируется колоссальное количество разнообразных соединений, как неорганических, так и органических. Углерод является основой всех живых существ, можно сказать, что углерод, наравне с водой и кислородом, — основа жизни на нашей планете! Углерод имеет разнообразие форм, которые не похожи ни по своим физико-химическим свойствам, ни по внешнему виду. Но всё это углерод!

История открытия углерода

Углерод был известен человечеству ещё с глубокой древности. Графит и уголь использовались ещё древними греками, а алмазы нашли применение в Индии. Правда, за графит частенько принимали похожие по внешнему виду соединения. Тем не менее, графит имел широкое применение в древности, в частности для письма. Даже его название происходит от греческого слова «графо» — «пишу». Графит сейчас используется в карандашах. Алмазами начали впервые торговать в Бразилии в первой половине 18 века, с этого времени открыто множество месторождений, а в 1970 году была разработана технология получения алмазов искусственным путём. Такие искусственные алмазы применяются в промышленности, натуральные же, в свою очередь, в ювелирном деле.

Углерод в природе

Наиболее значимое количество углерода собрано в атмосфере и гидросфере в виде углекислого газа. В атмосфере углерода содержится около 0,046%, а еще больше — в растворенном виде в Мировом Океане.

Кроме того, как мы видели выше, углерод является основой живых организмов. Например, в теле человека массой 70 кг содержится около 13 кг углерода! Это только в одном человеке! А углерод содержится также во всех растениях и животных. Вот и считайте…

Круговорот углерода в природе

Аллотропные модификации углерода

Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации , или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.

Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз , фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире » .


Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;
ж) однослойная нанотрубка

Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.

Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.


Графит — «тёмная сторона» алмаза

Применение углерода

Углерод и его соединения имеют огромное значение в жизнедеятельности человека. Из углерода образованы главные виды топлива на Земле — природный газ и нефть. Соединения углерода широко применяются в химической и металлургической промышленности, в строительстве, в машиностроении и медицине. Аллотропные модификации в виде алмазов используют в ювелирном деле, фуллерит и лонсдейлит в ракетостроении. Из соединений углерода изготавливаются различные смазки для механизмов, техническое оборудование и многое другое. Промышленность в настоящее время не может обойтись без углерода, он используется везде!

Углерод (от латинского: carbo «уголь») представляет собой химический элемент с символом С и атомным номером 6. Для образования ковалентных химических связей, доступны четыре электрона. Вещество является неметаллическим и четырехвалентным. Три изотопа углерода встречаются естественным образом, 12С и 13С стабильны, а 14С – радиоактивный изотоп, затухающий с периодом полураспада около 5730 лет . Углерод – один из немногих элементов, известных с древности. Углерод – это 15-й наиболее распространенный элемент в земной коре, и четвертый наиболее распространенный элемент во Вселенной по массе после водорода, гелия и кислорода. Обилие углерода, уникальное разнообразие его органических соединений и его необычная способность образовывать полимеры при температурах, обычно встречающихся на Земле, позволяют этому элементу служить общим элементом для всех известных форм жизни. Это второй наиболее распространенный элемент в человеческом теле по массе (около 18,5%) после кислорода. Атомы углерода могут связываться по-разному, называясь при этом аллотропами углерода. Наиболее известными аллотропами являются графит, алмаз и аморфный углерод. Физические свойства углерода широко варьируются в зависимости от аллотропной формы. Например, графит непрозрачен и черный, а алмаз – очень прозрачный. Графит достаточно мягкий, чтобы образовывать полосу на бумаге (отсюда и его название, от греческого глагола «γράφειν», что означает «писать»), в то время как алмаз является самым твердым известным в природе материалом. Графит является хорошим электрическим проводником, а алмаз имеет низкую электропроводность. В обычных условиях, алмаз, углеродные нанотрубки и графен имеют самую высокую теплопроводность среди всех известных материалов. Все углеродные аллотропы являются твердыми веществами в нормальных условиях, причем графит является наиболее термодинамически стабильной формой. Они химически устойчивы и требуют высокой температуры, чтобы реагировать даже с кислородом. Наиболее распространенное состояние окисления углерода в неорганических соединениях составляет +4, и +2 – в карбоксильных комплексах монооксида углерода и переходного металла. Крупнейшими источниками неорганического углерода являются известняки, доломиты и двуокись углерода, но значительные количества происходят из органических отложений угля, торфа, нефти и метанатных клатратов. Углерод образует огромное количество соединений, больше, чем любой другой элемент, с почти десятимиллионным количеством соединений, описанных до настоящего времени, и, тем не менее, это число является лишь частью числа теоретически возможных соединений в стандартных условиях. По этой причине, углерод часто упоминается как «царь элементов» .

Характеристики

Аллотропы углерода включают графит, одно из самых мягких из известных веществ, и алмаз, самое твердое природное вещество. Углерод легко связывается с другими малыми атомами, включая другие атомы углерода, и способен образовывать многочисленные устойчивые ковалентные связи с подходящими многовалентными атомами. Известно, что углерод образует почти десять миллионов различных соединений, подавляющее большинство всех химических соединений. Углерод также имеет самую высокую точку сублимации среди всех элементов. При атмосферном давлении, он не имеет температуры плавления, так как его тройная точка составляет 10,8 ± 0,2 МПа и 4600 ± 300 К (~ 4330 ° С или 7 820 ° F), поэтому он возгоняется при температуре около 3900 К. Графит гораздо более реактивный, чем алмаз, в стандартных условиях, несмотря на то, что он более термодинамически стабилен, поскольку его делокализованная система pi гораздо более уязвима для атаки. Например, графит может быть окислен горячей концентрированной азотной кислотой в стандартных условиях до меллитовой кислоты C6 (CO2H) 6, которая сохраняет гексагональные единицы графита при разрушении большей структуры. Углерод возгоняется в углеродистой дуге, температура которой составляет около 5800 К (5 530 ° С, 9 980 ° F). Таким образом, независимо от его аллотропной формы, углерод остается твердым при более высоких температурах, чем самые высокие температуры плавления, такие как вольфрам или рений. Хотя термодинамически углерод склонен к окислению, он более устойчив к окислению, чем такие элементы, как железо и медь, которые являются более слабыми восстановителями при комнатной температуре. Углерод – шестой элемент с электронной конфигурацией основного состояния 1s22s22p2, из которых четыре внешних электрона являются валентными электронами. Его первые четыре энергии ионизации 1086,5, 2352,6, 4620,5 и 6222,7 кДж / моль, намного выше, чем у более тяжелых элементов группы 14. Электроотрицательность углерода составляет 2,5, что значительно выше, чем у более тяжелых элементов 14 группы (1,8-1,9), но близка к большинству соседних неметаллов, а также к некоторым переходным металлам второго и третьего ряда. Ковалентные радиусы углерода обычно принимаются как 77,2 пм (C-C), 66,7 пм (C = C) и 60,3 пм (C≡C), хотя они могут варьироваться в зависимости от координационного числа и от того, с чем связан углерод. В общем случае, ковалентный радиус уменьшается при уменьшении координационного числа и увеличении порядка связей. Углеродные соединения составляют основу всех известных форм жизни на Земле, а углерод-азотный цикл обеспечивает некоторую энергию, выделяемую Солнцем и другими звездами. Хотя углерод образует необычайное разнообразие соединений, большинство форм углерода сравнительно не реагируют в нормальных условиях. При стандартных температурах и давлении, углерод выдерживает все, кроме самых сильных окислителей. Он не реагирует с серной кислотой, соляной кислотой, хлором или щелочами. При повышенных температурах, углерод реагирует с кислородом с образованием оксидов углерода и убирает кислород из оксидов металлов, оставляя элементный металл. Эта экзотермическая реакция используется в черной металлургии для плавки железа и контроля содержания углерода в стали:

    Fe3О4 + 4 C (s) → 3 Fe (s) + 4 CO (g)

с серой с образованием дисульфида углерода и с паром в реакции уголь-газ:

    C (s) + H2O (g) → CO (g) + H2 (g)

Углерод сочетается с некоторыми металлами при высоких температурах с образованием металлических карбидов, таких как цементит из карбида железа в стали и карбид вольфрама, широко используемый в качестве абразива и для изготовления жестких наконечников для режущих инструментов. Система аллотропов углерода охватывает ряд экстремумов:

Некоторые виды графита используются для теплоизоляции (например, противопожарные преграды и теплозащитные экраны), но некоторые другие формы являются хорошими тепловыми проводниками. Алмаз – самый известный природный теплопроводник. Графит непрозрачен. Алмаз очень прозрачный. Графит кристаллизуется в гексагональной системе . Алмаз кристаллизуется в кубической системе. Аморфный углерод полностью изотропный. Углеродные нанотрубки являются одними из самых известных анизотропных материалов.

Аллотропы углерода

Атомный углерод является очень недолговечным видом, и поэтому углерод стабилизируется в различных многоатомных структурах с различными молекулярными конфигурациями, называемыми аллотропами. Три относительно известных аллотропа углерода – аморфный углерод, графит и алмаз. Ранее считавшиеся экзотическими, фуллерены в настоящее время обычно синтезируются и используются в исследованиях; они включают бакиболы, углеродные нанотрубки, углеродные наноточки и нановолокна. Также было обнаружено несколько других экзотических аллотропов, таких как лонсалетит, стеклоуглерод, углеродный нанофаум и линейный ацетиленовый углерод (карбин). По состоянию на 2009 год, графен считается наиболее сильным материалом среди всех, когда-либо протестированных. Процесс отделения его от графита потребует некоторого дальнейшего технологического развития, прежде чем он станет экономичным для промышленных процессов. В случае успеха, графен можно будет использовать при строительстве космических лифтов. Он также может быть использован для безопасного хранения водорода для использования в двигателях на основе водорода в автомобилях. Аморфная форма представляет собой набор атомов углерода в некристаллическом, нерегулярном, стекловидном состоянии, а не содержащихся в кристаллической макроструктуре. Она присутствует в виде порошка и является основным компонентом таких веществ, как древесный уголь, ламповая копоть (сажа) и активированный уголь. При нормальных давлениях, углерод имеет форму графита, в котором каждый атом тригонально связан тремя другими атомами в плоскости, состоящей из сплавленных гексагональных колец, как и в ароматических углеводородах . Полученная сеть является двухмерной, и полученные плоские листы складываются и свободно связываются через слабые силы Ван-дер-Ваальса. Это дает графиту его мягкость и свойства расщепления (листы легко проскальзывают друг за другом). Из-за делокализации одного из внешних электронов каждого атома с образованием π-облака, графит проводит электричество, но только в плоскости каждого ковалентно связанного листа. Это приводит к более низкой удельной электропроводности для углерода, чем для большинства металлов. Делокализация также объясняет энергетическую стабильность графита над алмазом при комнатной температуре. При очень высоких давлениях, углерод образует более компактный аллотроп, алмаз, имеющий почти вдвое большую плотность, чем графит. Здесь каждый атом тетраэдрически соединен с четырьмя другими, образуя трехмерную сеть сморщенных шестичленных колец атомов. Алмаз имеет ту же кубическую структуру, что кремний и германий, и из-за прочности углерод-углеродных связей он является самым твердым природным веществом, что измеряется по сопротивлению царапинам. Вопреки распространенному мнению, что «алмазы вечны», они термодинамически нестабильны в нормальных условиях и превращаются в графит. Из-за высокого энергетического барьера активации, переход в форму графита настолько медленный при нормальной температуре, что он незаметен. При некоторых условиях, углерод кристаллизуется как лонсалейт, гексагональная кристаллическая решетка со всеми ковалентно связанными атомами и свойствами, аналогичными свойствам алмаза. Фуллерены представляют собой синтетическое кристаллическое образование с графитоподобной структурой, но вместо шестиугольников фуллерены состоят из пятиугольников (или даже семиугольников) атомов углерода. Отсутствующие (или дополнительные) атомы деформируют листы в сферы, эллипсы или цилиндры. Свойства фуллеренов (разделенных на бакиболы, бакитубы и нанобады) еще не полностью проанализированы и представляют собой интенсивную область исследований наноматериалов. Названия «фуллерен» и «бакибол» связаны с именем Ричарда Бакминстера Фуллера, популяризатора геодезических куполов, которые напоминают структуру фуллеренов. Бакиболы представляют собой довольно крупные молекулы, образованные полностью из углеродных связей тригонально, образуя сфероиды (наиболее известным и простейшим является баксинистерфеллерен C60 с формой футбольного мяча). Углеродные нанотрубки структурно подобны бакиболам, за исключением того, что каждый атом связан тригонально в изогнутом листе, который образует полый цилиндр. Нанобады впервые были представлены в 2007 году и представляют собой гибридные материалы (бакиболы ковалентно связаны с внешней стенкой нанотрубки), которые сочетают свойства обоих в одной структуре. Из других обнаруженных аллотропов, углеродная нанопена является ферромагнитным аллотропом, обнаруженным в 1997 году. Она состоит из кластерной сборки атомов углерода с низкой плотностью, натянутых вместе в рыхлую трехмерную сеть, в которой атомы тригонально связаны в шести- и семичленных кольцах. Она относится к числу самых легких твердых веществ с плотностью около 2 кг / м3. Аналогичным образом, стеклообразный углерод содержит высокую долю закрытой пористости, но, в отличие от обычного графита, графитовые слои не сложены в виде страниц в книге, но имеют более случайное расположение. Линейный ацетиленовый углерод имеет химическую структуру - (C::: C) n-. Углерод в этой модификации является линейным с орбитальной гибридизацией sp и является полимером с чередующимися одиночными и тройными связями. Этот карбин представляет значительный интерес для нанотехнологий, поскольку его модуль Юнга в сорок раз больше, чем у самого твердого материала – алмаза. В 2015 году команда из Университета Северной Каролины объявила о разработке еще одного аллотропа, который они назвали Q-углерод, созданный высокоэнергетическим лазерным импульсом низкой длительности на аморфной углеродной пыли. Сообщается, что Q-углерод проявляет ферромагнетизм, флуоресценцию и имеет твердость, превосходящую алмазы.

Распространенность

Углерод является четвертым по распространенности химическим элементом во Вселенной по массе после водорода, гелия и кислорода. Углерод изобилует в Солнце, звездах, кометах и атмосферах большинства планет. Некоторые метеориты содержат микроскопические алмазы, которые были сформированы, когда солнечная система все еще была протопланетным диском. Микроскопические алмазы также могут образовываться при интенсивном давлении и высокой температуре в местах воздействия метеорита. В 2014 году, НАСА объявила об обновленной базе данных для отслеживания полициклических ароматических углеводородов (ПАУ) во Вселенной. Более 20% углерода во Вселенной могут быть связаны с ПАУ, комплексными соединениями углерода и водорода без кислорода . Эти соединения фигурируют в мировой гипотезе ПАУ, где они, предположительно, играют роль в абиогенезе и формировании жизни. Похоже, что ПАУ были сформированы «через пару миллиардов лет» после Большого взрыва, широко распространены во вселенной и связаны с новыми звездами и экзопланетами. По оценкам, твердая оболочка земли, в целом, содержит 730 чнм углерода, при этом 2000 чнм содержатся в сердцевине и 120 чнм – в комбинированной мантии и коре. Поскольку масса земли составляет 5,9 72 × 1024 кг, это будет означать 4360 миллионов гигатонн углерода. Это намного больше, чем количество углерода в океанах или атмосфере (ниже). В сочетании с кислородом в углекислом газе, углерод находится в атмосфере Земли (приблизительно 810 гигатонн углерода) и растворяется во всех водоемах (приблизительно 36000 гигатонн углерода). В биосфере присутствует около 1900 гигатонн углерода. Углеводороды (такие как уголь, нефть и природный газ) также содержат углерод. Угольные «резервы» (а не «ресурсы») составляют около 900 гигатонн с, возможно, 18 000 Гт ресурсов. Запасы нефти составляют около 150 гигатонн. Доказанные источники природного газа составляют около 175 1012 кубических метров (содержащих около 105 гигатонн углерода), однако в исследованиях оценивается еще 900 1012 кубических метров «нетрадиционных» месторождений, таких как сланцевый газ, что составляет около 540 гигатонн углерода. Углерод также был обнаружен в гидратах метана в полярных регионах и под морями. По разным оценкам, количество этого углерода составляет 500, 2500 Гт, или 3000 Гт . В прошлом, количество углеводородов было больше. Согласно одному источнику, в период с 1751 по 2008 годы около 347 гигатонн углерода было выброшено в атмосферу в виде углекислого газа в атмосферу от сжигания ископаемого топлива. Другой источник добавляет количество, добавленное в атмосферу в период с 1750 года до 879 Гт, а общее количество в атмосфере, море и земле (например, торфяные болота) составляет почти 2000 Гт . Углерод является составной частью (12% по массе) очень больших масс карбонатных пород (известняк, доломит, мрамор и т. д.). Уголь содержит очень большое количество углерода (антрацит содержит 92-98% углерода) и является крупнейшим коммерческим источником минерального углерода, на который приходится 4000 гигатонн или 80% ископаемого топлива. Что касается индивидуальных аллотропов углерода, графит содержится в больших количествах в Соединенных Штатах (в основном, в Нью-Йорке и Техасе), в России, Мексике, Гренландии и Индии. Природные алмазы встречаются в горном кимберлите, содержащемся в древних вулканических «шеях» или «трубах». Большинство алмазных месторождений находится в Африке, особенно в Южной Африке, Намибии, Ботсване, Республике Конго и Сьерра-Леоне. Алмазные месторождения также обнаружены в Арканзасе, Канаде, Российской Арктике, Бразилии, а также в Северной и Западной Австралии. Теперь бриллианты также извлекают со дна океана у мыса Доброй Надежды. Алмазы встречаются естественным образом, но сейчас производится около 30% всех промышленных алмазов, используемых в США. Углерод-14 образуется в верхних слоях тропосферы и стратосферы на высотах 9-15 км в реакции, которая осаждается космическими лучами. Производятся тепловые нейтроны, которые сталкиваются с ядрами азота-14, образуя углерод-14 и протон. Таким образом, 1,2 × 1010% атмосферного углекислого газа содержит углерод-14. Астероиды, богатые углеродом, относительно преобладают во внешних частях пояса астероидов в нашей солнечной системе. Эти астероиды еще не были напрямую исследованы учеными. Астероиды могут использоваться в гипотетической угледобыче на основе космического пространства, что может быть возможно в будущем, но в настоящее время технологически невозможно.

Изотопы углерода

Изотопы углерода представляют собой атомные ядра, которые содержат шесть протонов плюс ряд нейтронов (от 2 до 16). У углерода есть два устойчивых, встречающихся в природе, изотопа. Изотоп углерод-12 (12С) образует 98,93% углерода на Земле, а углерод-13 (13С) образует оставшиеся 1,07%. Концентрация 12С еще больше увеличивается в биологических материалах, потому что биохимические реакции дискриминируют 13С. В 1961 году, Международный союз чистой и прикладной химии (ИЮПАК) принял изотопный углерод-12 в качестве основы для атомных весов. Идентификация углерода в экспериментах с ядерным магнитным резонансом (ЯМР) проводится с изотопом 13С. Углерод-14 (14С) представляет собой природный радиоизотоп, созданный в верхней атмосфере (нижняя стратосфера и верхняя тропосфера) путем взаимодействия азота с космическими лучами. Он находится в следовых количествах на Земле в количестве до 1 части на триллион (0,0000000001%), в основном, в атмосфере и поверхностных отложениях, в частности, торфе и других органических материалах. Этот изотоп распадается в ходе β-эмиссии 0,158 МэВ. Из-за относительно короткого периода полураспада, 5730 лет, 14С практически отсутствует в древних скалах. В атмосфере и в живых организмах, количество 14С почти постоянное, но снижается в организмах после смерти. Этот принцип используется в радиоуглеродном датировании, изобретенном в 1949 году, которое широко использовалось для определения возраста углеродистых материалов с возрастом до 40000 лет . Существует 15 известных изотопов углерода и наименьший срок жизни из них имеет 8C, который распадается за счет эмиссии протонов и альфа-распада и имеет период полураспада 1,98739 × 10-21 с. Экзотический 19C демонстрирует ядерный ореол, что означает, что его радиус значительно больше, чем можно было бы ожидать, если бы ядро было сферой постоянной плотности.

Образование в звездах

Формирование атомного ядра углерода требует почти одновременного тройного столкновения альфа-частиц (ядер гелия) внутри ядра гигантской или сверхгигантской звезды, что известно как тройной альфа-процесс, поскольку продукты дальнейших реакций ядерного синтеза гелия с водородом или другим ядром гелия производят литий-5 и бериллий-8 соответственно, оба из которых очень неустойчивы и почти мгновенно затухают обратно в более мелкие ядра . Это происходит в условиях температур более 100 мегакальвин и концентрации гелия, что недопустимо в условиях быстрого расширения и охлаждения ранней Вселенной, и поэтому во время Большого взрыва не было создано значительных количеств углерода. Согласно современной теории физической космологии, углерод образуется внутри звезд в горизонтальной ветви путем столкновения и трансформации трех ядер гелия. Когда эти звезды умирают как сверхновая, углерод рассеивается в космос в виде пыли. Эта пыль становится составным материалом для образования звездных систем второго или третьего поколения с аккрецированными планетами. Солнечная система – одна из таких звездных систем с обилием углерода, позволяющая существование жизни, как мы ее знаем. Цикл CNO является дополнительным механизмом слияния, который управляет звездами, где углерод работает как катализатор. Ротационные переходы различных изотопических форм монооксида углерода (например, 12CO, 13CO и 18CO) обнаруживаются в субмиллиметровом диапазоне длин волн и используются при изучении новообразующихся звезд в молекулярных облаках .

Углеродный цикл

В земных условиях, конверсия одного элемента в другой – явление очень редкое. Поэтому количество углерода на Земле эффективно постоянное. Таким образом, в процессах, которые используют углерод, он должен получаться откуда-то и утилизироваться в другом месте. Пути углерода в окружающей среде образуют углеродный цикл. Например, фотосинтетические установки извлекают углекислый газ из атмосферы (или морской воды) и строят его в биомассу, как в цикле Кальвина, процессе фиксации углерода. Некоторая часть этой биомассы съедается животными, в то время как некоторая часть углерода выдыхается животными в виде двуокиси углерода. Цикл углерода значительно сложнее, чем этот короткий цикл; например, некоторое количество двуокиси углерода растворяется в океанах; если бактерии не поглощают его, мертвое растительное или животное вещество может стать нефтью или углем, которое выделяет углерод при сжигании.

Соединения углерода

Углерод может образовывать очень длинные цепи взаимосвязанных углерод-углеродных связей, свойство, которое называется образованием цепочек. Углерод-углеродные связи устойчивы. Благодаря катанации (образованию цепочек), углерод образует бесчисленное количество соединений. Оценка уникальных соединений показывает, что большее количество из них содержат углерод. Аналогичное утверждение может быть сделано для водорода, потому что большинство органических соединений также содержат водород. Простейшая форма органической молекулы представляет собой углеводород – большое семейство органических молекул, которые состоят из атомов водорода, связанных с цепочкой атомов углерода. Длина цепи, боковые цепи и функциональные группы влияют на свойства органических молекул. Углерод встречается во всех формах известной органической жизни и является основой органической химии. При объединении с водородом, углерод образует различные углеводороды, которые важны для промышленности как хладагенты, смазочные материалы, растворители, как химическое сырье для производства пластмасс и нефтепродуктов, а также как ископаемое топливо. В сочетании с кислородом и водородом, углерод может образовывать множество групп важных биологических соединений, включая сахара, лигнаны, хитины, спирты, жиры и ароматические сложные эфиры, каротиноиды и терпены. С азотом, углерод образует алкалоиды, а с добавлением серы также образует антибиотики, аминокислоты и резиновые изделия. С добавлением фосфора к этим другим элементам, он образует ДНК и РНК, носители химического кода жизни и аденозинтрифосфат (АТФ), самую важную молекулу переноса энергии во всех живых клетках.

Неорганические соединения

Обычно углеродсодержащие соединения, которые связаны с минералами или которые не содержат водорода или фтора, обрабатываются отдельно от классических органических соединений; это определение не является строгим. Среди них простые оксиды углерода. Наиболее известным оксидом является двуокись углерода (CO2). Когда-то это вещество было главной составляющей палеоатмосферы, но сегодня является второстепенным компонентом атмосферы Земли . При растворении в воде, это вещество образует углекислоту (H2CO3), но, как и большинство соединений с несколькими односвязными кислородами на одном углероде, оно неустойчиво. Однако, через это промежуточное вещество образуются резонансные стабилизированные карбонатные ионы. Некоторыми важными минералами являются карбонаты, особенно кальциты. Углерод дисульфид (CS2) аналогичен. Другим распространенным оксидом является окись углерода (СО). Она образуется при неполном сгорании и является бесцветным газом без запаха. Каждая молекула содержит тройную связь и является довольно полярной, что приводит к тому, что она постоянно связывается с молекулами гемоглобина, вытесняя кислород, который имеет более низкую аффинность связывания. Цианид (CN-) имеет сходную структуру, но ведет себя подобно ионам галогенида (псевдогалоген). Например, он может образовывать молекулу нитрида цианогена (CN) 2), аналогичную диатомовым галогенидам. Другими необычными оксидами являются субоксид углерода (C3O2), неустойчивый монооксид углерода (C2O), триоксид углерода (CO3), циклопентанпептон (C5O5), циклогексангексон (C6O6) и меллитовый ангидрид (C12O9). С реактивными металлами, такими как вольфрам, углерод образует либо карбиды (C4-), либо ацетилиды (C2-2) с образованием сплавов с высокими температурами плавления. Эти анионы также связаны с метаном и ацетиленом, оба из которых являются очень слабыми кислотами. При электроотрицательности 2,5, углерод предпочитает образовывать ковалентные связи. Несколько карбидов представляют собой ковалентные решетки, такие как карборунд (SiC), который напоминает алмаз. Тем не менее, даже самые полярные и солеобразные карбиды не являются полностью ионными соединениями .

Металлоорганические соединения

Органометаллические соединения, по определению, содержат, по меньшей мере, одну связь углерод-металл. Существует широкий спектр таких соединений; основные классы включают простые соединения алкил-металл (например, тетраэтилэлид), η2-алкеновые соединения (например, соль Zeise) и η3-аллильные соединения (например, димер хлорида аллилпалладия); металлоцены, содержащие циклопентадиенильные лиганды (например, ферроцен); и карбеновые комплексы переходных металлов. Существует много карбонилов металлов (например, тетракарбонилникель); некоторые работники считают, что лиганд монооксида углерода является чисто неорганическим, а не металлоорганическим, соединением. В то время как считается, что углерод исключительно образует четыре связи, сообщается об интересном соединении, содержащем октаэдрический гексакоординированный атом углерода. Катион этого соединения представляет собой 2+. Это явление объясняется аурофильностью золотых лигандов. В 2016 году было подтверждено, что гексаметилбензол содержит атом углерода с шестью связями, а с не обычными четырьмя.

История и этимология

Английское название углерода (carbon) происходит от латинского carbo, обозначающего «уголь» и «древесный уголь» , отсюда же и французское слово charbon, что означает «древесный уголь». На немецком, голландском и датском языках названия углерода – Kohlenstoff, koolstof и kulstof соответственно, все в буквальном смысле означают угольную субстанцию. Углерод был обнаружен в доисторических временах и был известен в формах сажи и древесного угля в самых ранних человеческих цивилизациях. Алмазы были известны, вероятно, уже в 2500 г. до н.э. в Китае, а углерод в виде древесного угля был изготовлен в римские времена путем той же химии, что и сегодня, путем нагрева древесины в пирамиде, покрытой глиной, чтобы исключить воздух. В 1722 году Рене Антуан Ферхо де Реамур продемонстрировал, что железо превращается в сталь через поглощение какого-либо вещества, которое теперь известно как углерод. В 1772 году Антуан Лавуазье показал, что алмазы являются формой углерода; когда он сжигал образцы древесного угля и алмаза и обнаружил, что ни один из них не производил никакой воды, и что оба вещества выпускали равное количество углекислого газа на грамм. В 1779 году Карл Вильгельм Шееле показал, что графит, который считался формой свинца, вместо этого был идентичен древесному углю, но с небольшой примесью железа и что он давал «воздушную кислоту» (что является диоксидом углерода) при окислении азотной кислотой. В 1786 году французские ученые Клод Луи Бертолле, Гаспард Мондж и К. А. Вандермонд подтвердили, что графит, в основном, был углеродом, при окислении его в кислороде почти так же, как Лавуазье делал с алмазом. Некоторое количество железа снова оставалось, что, по мнению французских ученых, было необходимо для структуры графита. В своей публикации они предложили название carbone (латинское слово carbonum) для элемента в графите, который выделялся как газ при сжигании графита. Затем Антуан Лавуазье перечислил углерод как элемент в своем учебнике 1789 года. Новый аллотроп углерода, фуллерен, который был обнаружен в 1985 году, включает наноструктурные формы, такие как баккиболы и нанотрубки. Их первооткрыватели – Роберт Керл, Гарольд Крото и Ричард Смолли – получили Нобелевскую премию по химии в 1996 году. Возникший в результате возобновленный интерес к новым формам приводит к открытию дополнительных экзотических аллотропов, включая стеклообразный углерод, и осознанию того, что «аморфный углерод» не является строго аморфным.

Производство

Графит

Коммерчески жизнеспособные природные отложения графита встречаются во многих частях мира, но наиболее экономически важные источники находятся в Китае, Индии, Бразилии и Северной Корее. Графитовые отложения имеют метаморфическое происхождение, обнаруженное в сочетании с кварцем, слюдой и полевыми шпатами в сланцах, гнейсах и метаморфизованных песчаниках и известняках в виде линз или жил, иногда толщиной в несколько метров или более. Запасы графита в Борроудейл, Камберленд, Англия, были вначале достаточного размера и чистоты, поэтому до 19-го века карандаши делались просто путем распиливания блоков из натурального графита на полоски перед обклеиванием полос в древесине. Сегодня меньшие отложения графита получают путем измельчения родительской породы и плавания более легкого графита на воде. Существует три типа натурального графита – аморфный, чешуйчатый или кристаллический. Аморфный графит имеет самое низкое качество и является наиболее распространенным. В отличие от науки, в промышленности «аморфный» относится к очень маленькому размеру кристалла, а не к полному отсутствию кристаллической структуры. Слово «аморфный» используется для обозначения продуктов с низким количеством графита и является самым дешевым графитом. Крупные месторождения аморфного графита находятся в Китае, Европе, Мексике и США. Плоский графит реже встречается и имеет более высокое качество, чем аморфный; он выглядит как отдельные пластины, которые кристаллизуются в метаморфических породах. Цена гранулированного графита может в четыре раза превышать цену аморфного. Чешуйчатый графит хорошего качества может быть переработан в расширяемый графит для многих применений, таких как антипирены. Первичные месторождения графита находятся в Австрии, Бразилии, Канаде, Китае, Германии и на Мадагаскаре. Жидкий или кусковой графит – самый редкий, самый ценный и высококачественный тип природного графита. Он находится в жилах вдоль интрузивных контактов в твердых кусках, и коммерчески добывается только в Шри-Ланке. Согласно USGS, мировое производство природного графита в 2010 году составило 1,1 миллиона тонн, при этом в Китае было добыто 800 000 тонн, в Индии – 130 000 т, в Бразилии – 76 000 т, в Северной Корее – 30 000 т и в Канаде – 25 000 т. Никакого природного графита не было добыто в Соединенных Штатах, но в 2009 году было добыто 118 000 т синтетического графита с оценочной стоимостью 998 млн. долл. США.

Алмаз

Поставки алмазов контролируются ограниченным числом бизнесов, а также высоко концентрируются в небольшом количестве мест по всему миру. Только очень небольшая доля алмазной руды состоит из реальных алмазов. Руда измельчается, во время чего необходимо принять меры для предотвращения разрушения крупных алмазов в этом процессе, а затем частицы сортируются по плотности. Сегодня алмазы добывают во фракции богатой алмазами с помощью рентгеновской флуоресценции, после чего последние шаги сортировки выполняются вручную. До распространения использования рентгеновских лучей, разделение проводилось с помощью смазочных лент; известно, что алмазы были обнаружены только в аллювиальных отложениях на юге Индии. Известно, что алмазы более склонны прилипать к массе, чем другие минералы в руде. Индия была лидером в производстве алмазов с момента их открытия примерно в IX веке до нашей эры до середины 18 века нашей эры, но коммерческий потенциал этих источников был исчерпан к концу 18 века, и к тому времени Индия была затомлена Бразилией, где первые алмазы были найдены в 1725 году. Алмазное производство первичных месторождений (кимберлитов и лампроитов) началось только в 1870-х годах, после открытия алмазных месторождений в Южной Африке. Производство алмазов увеличивалось с течением времени, и с этой даты было накоплено всего 4,5 млрд каратов. Около 20% от этого количества было добыто только за последние 5 лет, и в течение последних десяти лет начали производство 9 новых месторождений, и еще 4 ждут скорого открытия. Большинство из этих месторождений находятся в Канаде, Зимбабве, Анголе и одно – в России. В Соединенных Штатах, алмазы были обнаружены в Арканзасе, Колорадо и Монтане. В 2004 году поразительное открытие микроскопического алмаза в Соединенных Штатах привело к выпуску в январе 2008 года массового отбора проб кимберлитовых труб в отдаленной части Монтаны. Сегодня большинство коммерчески жизнеспособных алмазных месторождений находятся в России, Ботсване, Австралии и Демократической Республике Конго. В 2005 году, Россия произвела почти одну пятую мирового запаса алмазов, по сообщению Британской Геологической Службы. В Австралии самая богатая диамантированная труба достигла пиковых уровней производства в 42 метрических тонны (41 тонна, 46 коротких тонн) в год в 1990-х годах. Существуют также коммерческие месторождения, активные добычи которых осуществляются на Северо-Западных территориях Канады, Сибири (в основном, на территории Якутии, например, в Трубе «Мир» и в Удачной трубе), в Бразилии, а также в Северной и Западной Австралии.

Применения

Углерод необходим для всех известных живых систем. Без него невозможно существование жизни, такой, как мы ее знаем. Основное экономическое использование углерода, кроме продуктов питания и древесины, относится к углеводородам, в первую очередь, к ископаемому топливу метановому газу и сырой нефти. Сырая нефть перерабатывается нефтеперерабатывающими заводами для производства бензина, керосина и других продуктов. Целлюлоза представляет собой природный углеродсодержащий полимер, производимый растениями в виде дерева, хлопка, льна и конопли. Целлюлоза используется, в основном, для поддержания структуры растений. Коммерчески ценные углеродные полимеры животного происхождения включают шерсть, кашемир и шелк. Пластмассы изготавливают из синтетических углеродных полимеров, часто с атомами кислорода и азота, включенными через регулярные интервалы в основную полимерную цепь. Сырье для многих из этих синтетических веществ поступает из сырой нефти. Использование углерода и его соединений чрезвычайно разнообразно. Углерод может образовывать сплавы с железом, наиболее распространенным из которых является углеродистая сталь. Графит сочетается с глинами, образуя «свинец», используемый в карандашах, используемых для письма и рисования. Он также используется в качестве смазки и пигмента в качестве формовочного материала при производстве стекла, в электродах для сухих батарей и гальванизации и гальванопластики, в щетках для электродвигателей и в качестве замедлителя нейтронов в ядерных реакторах. Уголь используется как материал для изготовления произведений искусства, в качестве гриля для барбекю, для выплавки железа и имеет множество других применений. Древесина, уголь и нефть используются в качестве топлива для производства энергии и для отопления. Алмазы высокого качества используются в производстве ювелирных изделий, а промышленные алмазы используются для сверления, резки и полировки инструментов для обработки металлов и камня. Пластмассы изготавливаются из ископаемых углеводородов, а углеродное волокно, изготовленное путем пиролиза синтетических полиэфирных волокон, используется для армирования пластмасс с образованием передовых, легких композиционных материалов. Углеродное волокно изготавливается путем пиролиза экструдированных и растянутых нитей полиакрилонитрила (PAN) и других органических веществ. Кристаллическая структура и механические свойства волокна зависят от типа исходного материала и последующей обработки. Углеродные волокна, изготовленные из PAN, имеют структуру, напоминающую узкие нити графита, но термическая обработка может переупорядочить структуру в непрерывный лист. В результате, волокна имеют более высокую удельную прочность на растяжение, чем сталь. Углеродная сажа используется в качестве черного пигмента в печатных красках, масляной краске и акварелях художников, углеродной бумаге, автомобильной отделке, чернилах и лазерных принтерах. Углеродная сажа также используется в качестве наполнителя в резиновых изделиях, таких как шины и в пластмассовых соединениях. Активированный уголь используется в качестве абсорбента и адсорбента в фильтровальных материалах в таких разнообразных применениях, как противогазы, очистка воды и кухонные вытяжки, а также в медицине для поглощения токсинов, ядов или газов из пищеварительной системы. Углерод используется при химическом восстановлении при высоких температурах. Кокс используется для восстановления железной руды в железе (плавка). Затвердевание стали достигается за счет нагрева готовых стальных компонентов в углеродном порошке. Карбиды кремния, вольфрама, бора и титана входят в число самых твердых материалов и используются в качестве абразивов для резки и шлифования. Углеродные соединения составляют большую часть материалов, используемых в одежде, таких как натуральный и синтетический текстиль и кожа, а также почти все внутренние поверхности в среде, отличной от стекла, камня и металла.

Бриллианты

Алмазная промышленность подразделяется на две категории, одна из которых – алмазы высокого качества (драгоценные камни), а другая – алмазы промышленного класса. Хотя существует большая торговля обоими типами алмазов, оба рынка действуют совершенно по-разному. В отличие от драгоценных металлов, таких как золото или платина, бриллианты драгоценных камней не торгуются как товар: в продаже алмазов имеется существенная надбавка, и рынок перепродажи алмазов не очень активен. Промышленные алмазы ценятся, в основном, за их твердость и теплопроводность, при этом геммологические качества ясности и цвета, в основном, неактуальны. Около 80% добытых алмазов (равно примерно 100 млн каратов или 20 тонн в год) непригодны для использования, и используются в промышленности (алмазный лом). Синтетические алмазы, изобретенные в 1950-х годах, почти сразу нашли промышленные применения; Ежегодно производится 3 млрд каратов (600 тонн) синтетических алмазов. Доминирующим промышленным использованием алмаза является резка, сверление, шлифовка и полировка. Большинство этих применений не требуют больших алмазов; на самом деле, большинство алмазов драгоценного качества, за исключением алмазов небольшого размера, могут использоваться в промышленности. Алмазы вставляются в наконечники сверл или пильные диски или измельчаются в порошок для использования в шлифовании и полировке. Специализированные применения включают использование в лабораториях в качестве хранилища для экспериментов высокого давления, высокопроизводительных подшипников и ограниченное использование в специализированных окнах. Благодаря достижениям в области производства синтетических алмазов, новые применения становятся практически осуществимыми. Большое внимание уделяется возможному использованию алмаза в качестве полупроводника, подходящего для микрочипов, и из-за его исключительной теплопроводности в качестве радиатора в электронике.

Понравилась статья? Поделитесь с друзьями!