Старт в науке. Гидра (род) - Дыхание и выделение А17

В статье читатели смогут узнать, что такое гидра. А также познакомится с историей открытия, особенностями данного животного и местом обитания.

История открытия животного

Прежде всего следует дать научное определение. Пресноводная гидра - это род сидячих (по образу жизни) кишечнополостных, относящихся к классу гидроидных. Представители этого рода обитают в реках с относительно медленным течением или стоячих водоемах. Они крепятся к грунту (дну) или растениям. Это малоподвижный одиночный полип.

Первые данные о том, что такое гидра, дал нидерландский ученый, конструктор микроскопа Антони ван Левенгук. Он являлся также основоположником научной микроскопии.

Более подробное описание, а также процессы питания, движения, размножения и регенерации гидры раскрыл швейцарский ученый Авраам Трамбле. Свои результаты он описал в книге "Мемуары к истории одного рода пресноводных полипов".

Данные открытия, которые стали предметом разговоров, принесли большую славу ученому. В настоящее время считается, что именно опыты по изучению регенерации рода послужили толчком к возникновению экспериментальной зоологии.

Уже позже Карлом Линнеем роду было дано научное название, которое исходило из древнегреческих мифов о Лернейской Гидре. Возможно, ученый связал название рода с мифическим существом ввиду его регенерационных способностей: когда гидре отрубали голову, на ее месте вырастала другая.

Строение тела

Раскрывая тему "Что такое гидра?", следует дать и внешнее описание рода.

Длина туловища составляет от одного миллиметра до двух сантиметров, а иногда и немного больше. Тело гидры имеет цилиндрическую форму, спереди находится рот, окруженный щупальцами (их количество может достигать двенадцати). Сзади размещается подошва, с помощью которой животное может передвигаться и прикрепляться к чему-либо. На ней есть узкая пора, через нее выделяется из кишечной полости жидкость и пузырьки газа. Особь вместе с этим пузырьком открепляется от опоры и всплывает. При этом голова находится в толще воды. Таким способом особь расселяется по водоёму.

Строение гидры простое. Иначе говоря, тело представляет собой мешок, стенки которого состоят из двух слоев.

Жизненные процессы

Говоря о процессах дыхания и выделения, следует сказать: оба процесса происходят по всей поверхности тела. В выделении важную роль играют клеточные вакуоли, главной функцией которых является осморегуляторная. Ее суть заключается в том, что вакуоли выводят остатки воды, которые поступают в клетки вследствие процессов односторонней диффузии.

Благодаря наличию нервной системы, имеющей сетчатое строение, пресноводная гидра осуществляет простейшие рефлексы: животное реагирует на температуру, механическое раздражение, освещенность, на наличие химических веществ в водной среде и на другие факторы среды.

Основу питания гидры составляют мелкие беспозвоночные - циклопы, дафнии, олигохеты. Животное захватывает при помощи щупальцев добычу, яд стрекательной клетки довольно быстро поражает ее. Затем пища подносится щупальцами ко рту, который, благодаря сокращениям тела, как бы надевается на добычу. Остатки пищи гидра выбрасывает через рот.

Размножение гидры в благоприятных условиях происходит бесполым путем. На теле кишечнополостного образуется почка, которая некоторое время растет. Позже у нее появляются щупальца, а также прорывается рот. Молодая особь отделяется от материнской, прикрепляется к субстрату щупальцами и начинает вести самостоятельный образ жизни.

Половое размножение гидры начинается осенью. На ее теле образовываются половые железы, а в них - половые клетки. Большая часть особей раздельнополые, но встречается и гермафродитизм. Оплодотворение яйцеклетки происходит в теле материнской особи. Образованные зародыши развиваются, а зимой взрослая особь погибает, а зародыши зимуют на дне водоема. На этот период они впадают в процесс анабиоза. Таким образом, развитие у гидр прямое.

Нервная система гидры

Как говорилось выше, у гидры она сетчатая. В одном из слоев тела нервные клетки образуют рассеянную нервную систему. В другом слое не много нервных клеток. Всего в теле животного около пяти тысяч нейронов. У особи нервные сплетения есть на щупальцах, подошве и возле рта. Последние исследования показали, что гидра имеет нервное околоротовое кольцо, очень похожее на нервное кольцо гидромедузы.

У животного нет определенного деления нейронов на отдельные группы. Одна клетка воспринимает раздражение и передает сигнал мускульным. Есть в ее нервной системе химические и электрические синапсы (место контакта двух нейронов).

Также у этого примитивного животного обнаружены белки опсины. Есть предположение, что у опсинов человека и гидры общее происхождение.

Рост и способность к регенерации

Клетки гидры обновляются постоянно. Они делятся в средней части туловища, затем двигаются к подошве и щупальцам. Именно здесь они гибнут и слущиваются. Если возникает избыток делящихся клеток, то они перемещаются в почки в нижнюю часть тела.

У гидры есть способность к регенерации. Даже после поперечного разреза тела на несколько частей, каждая из них восстановится до исходного вида. Щупальца и рот восстанавливаются на той стороне, что была ближе к оральному концу туловища, а подошва - на другой стороне. Особь способна восстановится из небольших кусочков.

Кусочки тела хранят информацию о движении оси тела в структуре актинового цитоскелета. Изменение этой структуры приводит к нарушениям в процессе регенерации: может образоваться несколько осей.

Продолжительность жизни

Говоря о том, что такое гидра, важно сказать и о длительности жизненного цикла особей.

Еще в девятнадцатом веке была выдвинута гипотеза о том, что гидра бессмертна. Некоторые ученые на протяжении всего последующего столетия пытались ее доказать, а некоторые - опровергнуть. Лишь в 1997 году она все-таки была доказана Даниэлем Мартинесом с помощью эксперимента, который длился четыре года. Также есть мнение, что бессмертие гидры связано с высокой регенерацией. А то, что зимой в реках средней полосы взрослые особи погибают, связано, скорее всего, с нехваткой пищи или воздействием неблагоприятных факторов.

О реакции пресноводной гидры на экзогенные биологически активные (гормональные) соединения

С.М. Никитина, И.А. Ваколюк (Калининградский государственный университет)

Функционирование гормонов как важнейших регуляторов и интеграторов метаболизма и разнообразнейших функций в организме невозможно без существования систем специфической рецепции сигнала и его трансформации в конечный полезный эффект, то есть без гормонкомпетентной системы . Иными словами, наличие реакции на организменном уровне на экзогенные соединения невозможно без наличия циторецепции к этим соединениям и соответственно без существования у этих животных эндогенных соединений, родственных тем, которыми мы воздействуем. Это не противоречит концепции универсальных блоков , когда основные молекулярные структуры в функциональных системах живых организмов обнаруживаются практически в полном наборе уже на самых ранних этапах эволюции, какие только доступны изучению, представлены ограниченным числом молекул и осуществляют одноименные элементарные функции не только у представителей одного царства, например в разных группах млекопитающих или даже в разных типах, но и у представителей различных царств, в том числе у многоклеточных и одноклеточных, у высших эукариот и прокариот.

Однако следует обратить внимание на то, что данные о составе и функциях соединений, выполняющих роль гормонов у позвоночных животных, у представителей таксонов достаточно низкого филогенетического уровня только начинают появляться . Из групп животных низкого филогенетического уровня - гидра как представитель кишечнополостных является наиболее примитивным организмом, обладающим настоящей нервной системой. Нейроны различаются морфологически, химически и, вероятно, функционально. Каждый из них содержит нейросекреторные гранулы . Установлено значительное разнообразие нейрональных фенотипов у гидры. В гипостоме имеются упорядоченно расположенные группы по 6-11 синаптически связанных клеток, которые можно рассматривать как доказательство наличия у гидр примитивных нервных ганглиев. Кроме обеспечения поведенческих реакций, нервная система гидр выполняет роль эндокринной регуляторной системы , обеспечивая контроль метаболизма, размножения, развития. У гидр существует дифференцировка нервных клеток по составу содержащихся в них нейропептидов ). Предполагают , что молекулы окситоцина, вазопрессина, половых стероидов и глюкокортикоидов являются универсальными. Они найдены и у представителей кишечнополостных. Головной и подошвенный активаторы (и ингибиторы) выделены из метаноловых экстрактов тела гидр. Головной активатор, выделенный из актиний, аналогичен по составу и свойствам нейропептиду, обнаруженному в гипоталамусе и кишечнике коровы, крысы, свиньи, человека и в крови последнего. Кроме того, было показано, что и у беспозвоночных и у позвоночных в обеспечении реакции клеток на нейрогормоны участвуют циклические нуклеотиды, то есть механизм действия этих веществ в двух филогенетически различных линиях един.

Целью данного исследования, учитывая вышеизложенное, мы избрали изучение комплексного влияния на пресноводную гидру экзогенных биологически активных (гормональных) соединений.

Материал и методы исследования

Животных для эксперимента собирали в июне-июле 1985-1992 гг. на стационаре (протока реки Немонин, поселок Матросово Полесского района). Адаптация к содержанию в лабораторных условиях - 10-14 суток. Объем материала: тип - Coelenterata; класс - Hydrozoa; вид - Hydra oligactis Pallas; количество - 840. Количество животных отражено в начале эксперимента и не учитывается прирост численности.

В работе были использованы водорастворимые гормональные соединения окситоцинового ряда, передней доли гипофиза с исходной активностью в 1 мл (ип) (гифотоцин - 5ЕД, питуитрин - 5ЕД, маммофизин - 3ЕД, префизон - 25ЕД, гонадотропин - 75ЕД) и стероид - преднизолон - 30 мг, которые у позвоночных обеспечивают трехзвенную эндокринную регуляцию, включающую гипоталамо-гипофизарный комплекс и эпителиальные железы.

В предварительных опытах были использованы концентрации препаратов от 0,00002 до 20 мл ип/л среды содержания животных.

Проводилось три группы исследования:

1-я - определение "+" или "-" реакции во всех принятых нами концентрациях;

2-я - определение диапазона концентраций, обеспечивающих работу в хроническом режиме разной продолжительности;

3-я - хронический эксперимент.

В эксперименте учитывалась активность почкования гидры. Полученные данные подвергались стандартной статистической обработке.

Результаты исследований

При определении "" реакции гидр в широком диапазоне концентраций соединений были отобраны три (0,1 мл ип/л среды, 0,02 мл ип/л среды и 0,004 мл ип/л среды).

В контрольной группе гидр в течение пяти суток почкование оставалось на уровне 0,0- 0,4 почки /гидру (Ра). В среде минимальной концентрации префизона прирост был 2,2 особи/гидру, питуитрина - 1,9 особи/гидру (достоверность различий с контролем крайне высока - с уровнем значимости 0,01). В средних концентрациях хорошо себя проявили гифотоцин, маммофизин и префизон (1,8-1,9 особей/гидру). Преднизолон в минимальной, и особенно в средней концентрации, вызвал прирост численности 1,1-1,3 особи/гидру, что значительно превышает контроль.

В следующем эксперименте использованы только оптимальные концентрации гормональных соединений. Продолжительность эксперимента - 9 суток. К началу опыта по значению Ра контрольная и экспериментальная группы достоверно не различимы. Через девять суток эксперимента значения Ра достоверно отличалось в опытных группах и контроле с уровнем значимости 0,05 (табл. 1).

Таблица 1

Влияние гормональных препаратов на почкование гидры (Ра) и вероятность достоверности их различий (р)

СредаРаИзменениер1 сутки9 суткиРа1 сутки9 суткиКонтроль1,20,81,50,90,30,1--Гонадотропин2,11,25,10,33,00,80,710,95Префизон1,10,74,92,03,81,30,130,97Гифотоцин1,80,86,12,24,31,40,580,99Питуитрин0,80,54,52,03,71,50,470,98Маммофизин1,10,35,32,04,21,70,150,99Преднизолон1,50,47,12,25,61,80,430,99

Как видно из таблицы, наибольшее значение Ра получено при содержании животных в преднизолоне. Все пептидные препараты дают приблизительно сходные значения Ра (в среднем 3,80,5). Однако и здесь есть разброс. Наилучший эффект (4,31,4) достигается при содержании животных в среде с очищенным экстрактом нейрогипофиза - гифотоцином. Близок к нему по степени воздействия маммофизин. В экспериментальных группах с питуитрином и префизоном значения величины Ра равны 3,71,5 и 3,81,3 соответственно. Наименьший эффект дает воздействие на гидр гонадотропином. Недостоверные различия в Ра возникают к концу первых суток после помещения гидр в растворы гормональных препаратов. На протяжении девяти суток эксперимента Ра в контроле не изменяется. Начиная с третьих суток Ра во всех экспериментальных группах существенно превышает Ра в контроле. Следует отметить постепенное достоверное увеличение этого показателя у экспериментальных групп к девятым суткам.

Для оценки статистической достоверности оказываемых воздействий сравнивались значения критерия F (отношение средних квадратов), полученные для каждого из двух факторов в отдельности (А - фактор длительности содержания; В - фактор воздействия) и для их взаимодействия (А+В), и табличные значения критерия для двух уровней значимости Р=0,05 и Р=0,01 (табл. 2).

Таблица 2

Результаты дисперсионного анализа влияния гормональных препаратов и длительности содержания на интенсивность бесполого размножения Hydra oligactis

Фак-Фактическое в группахТабличое РторыПитуитринМаммофизинГифотоцинГонадотропинПрефизонПреднизолон0,050,01А3,441,402,272,173,621,301,922,50В8,374,048,094,738,2612,704,007,08А+В1,120,960,560,371,071,031,922,50Как видно из таблицы, Fфакт для фактора воздействия при уровне значимости 0,05 во всех экспериментальных группах больше Fтабл, а при уровне значимости 0,01 такая картина наблюдается в группах с питуитрином, гифотоцином, префизоном и преднизолоном, причем степень воздействия в группе с преднизолоном самая высокая, намного больше, чем в группах с питуитрином, гифотоцином и префизоном, имеющих сходную силу воздействия (значения Fфакт очень близки). Влияние взаимодействия факторов А и В во всех экспериментальных группах не является доказанным.

Для фактора А Fфакт меньше Fтабл (при обоих уровнях значимости) в группах с маммофизином и преднизолоном. В группах с гифотоцином и гонадотропином Fфакт больше Fтабл при Р=0,05, то есть влияние этого фактора не может считаться окончательно доказанным, в отличие от экспериментальных групп с питуитрином и префизоном, где Fфакт больше Fтабл и при Р=0,01 и при Р=0,05.

Все гормональные препараты, кроме гонадотропина, в той или иной степени задерживают начало бесполого размножения. Однако статистически достоверным это оказывается только в группе с префизоном (Р=0,01). Использованные в эксперименте гормональные препараты достоверно не влияют на продолжительность развития единственной почки, изменяют взаимное влияние первой и второй почек: питуитрин, маммофизин, префизон, гонадотропин - при наличии только сформированного головного отдела развивающихся почек; питуитрин, гонадотропин и преднизолон - при наличии хотя бы одного сформированного подошвенного отдела развивающихся почек.

Таким образом, можно считать установленной чувствительность гидр к широкому спектру гормональных соединений позвоночных и предположить, что экзогенные гормональные соединения включаются (как синергисты или антагонисты) в эндокринный регуляторный цикл, присущий самой гидре.

Список литературы

1. Перцева М.Н. Межмолекулярные основ

Гидры - это особый род сидячих кишечнополостных, которые своим внешним видом и образом жизни напоминают растения, но все же они относятся к царству животных. Нервная система у гидры устроена таким образом, чтобы обеспечить возможность существу добывать достаточное количество пищи.

Разобраться какого типа нервная система у гидры непросто, так как эта структура довольно проста и встречается не только у этих существ, но также у некоторых видов медуз и других примитивных животных. Гидры - это сравнительно небольшие животные организмы, достигающие размеров от 2 до 20 мм.

Клетки, формирующие нервную систему, по форме напоминают звездочки, которые соединены лучами между собой, образовывая нейронную сеть. Нервная система располагается под кожно-мускульными клетками. Органа центрального восприятия электрических импульсов, вызванных внешними или внутренними раздражителями, у гидр нет. Максимальное количество нейронов составляет примерно 5000 шт. и все они соединены между собой.

Нервная система гидры получила название диффузного плексуса, так как имеет место рассеянное и неоднородное сплетение. Сгущение диффузного плексуса наблюдается в области подошвы, ротовой полости и щупалец. Последние исследования показали, что в области ротового отверстия имеется нервное кольцо, которое отличается схожей структурой с нервным кольцом, располагающимся по краю зонтика гидромедузы.

Нервная система гидры крайне примитивна, поэтому клетки, ее формирующие, не имеют четкого деления на моторные, вставочные и чувствительные. В то же время нужно учитывать, что все же определенное деление клеток нервной системы этого существа существует. Выделяются 2 основных вида нервных клеток - ганглиозные и чувствительные.

Строение этих 2 видов клеток имеет кардинальные отличия. Чувствительные клетки располагаются поперек эпителиального слоя и имеют 1 неподвижный жгутик, усеянный микроскопическими ворсинками. Этот жгутик выходит во внешнюю среду и проводит раздражители, действующие извне. Клетки ганглиозного типа располагаются у самого основания эпителиально-мускульного слоя, поэтому их отростки не могут воспринимать раздражители, действующие извне, но при этом они активно участвуют в сокращении мускулатуры, когда это требуется.

По своему морфологическому составу подавляющее большинство нервных клеток гидры являются биполярными, что обеспечивает им лучшую проводимость и возможность адекватно реагировать на раздражители, воздействующие на тело этого организма из внешней среды.

Несмотря на примитивность строения нервной системы гидры, все же проводимость обеспечивается не только электрическими, но и химическими реакциями. К химическим нейромедиаторам у такого организма, как гидра, относится серотонин, дофамин, гамма-аминокислота, норадриналин, глютамат, глицин, а кроме того больное количество разных видов нейропептидов.

Все эти химические вещества более свойственны сложным животным организмам, но небольшая их часть представлена и у простейших. Несмотря на то что у гидры отсутствует центральная нервная система, все же она способна воспринимать световые раздражители. Сравнительно недавно даже такие организмы, как медузы, считались полностью неспособными различать свет и тьму, но в последствии были обнаружены особые клетки, позволяющие этим существам, дрейфующим по океаническим просторам, различать свет и тьму и выбирать направление движения. Это крайне эффективно, ведь в более поверхностных слоях воды живет большее количество мелких ракообразных и других организмов, которыми питаются медузы.

У гидры имеется схожий механизм распознавания света и тьмы. Распознавать свет гидрам помогает особый чувствительный белок, который также известен, как опсин. Проведение генетического анализа этого белка, извлеченного из тела гидры, позволило выявить ряд схожий черт с аналогичным белком, имеющимся у человека. Подобное исследование показало, что белок опсин у человека и у гидры имеет общее происхождение.

Нервная система гидры довольно эффективна и обеспечивает этому существу лучшие условия для выживания. При минимальном касании к телу гидры, возбуждение которое зарождается в одной точке ее тела, быстро распространяется на другие. Учитывая, что нервный импульс мгновенно распространяется по телу гидры, наблюдается быстрое сокращение кожно-мускульной системы, из-за чего все тело существа быстро укорачивается. Подобная ответная реакция на имеющийся раздражитель извне считается безусловным рефлексом.

Нервные клетки, как и другие ткани тела гидры, отличаются значительной возможностью к регенерации. При разделении гидры на несколько частей каждая из таких половинок в дальнейшем может стать самостоятельным организмом и отрастить утерянные части.

Несмотря на то что гидры, как правило, остаются на одном месте на протяжении длительного времени, все же при необходимости это создание может медленно передвигаться, чтобы найти более удобное место для охоты на свою добычу. Особенности передвижения гидры также во многом обусловлены строением нервной системы этого существа.

Энциклопедичный YouTube

    1 / 5

    ✪ Гидра- подводная хищница.wmv

    ✪ Гидра пресноводная

    ✪ Пресноводный полип Гидра. Онлайн подготовка к ЕГЭ по Биологии.

    ✪ Создание Гидры (+ EEVEE), полный урок. Create a Hydra in Blender (+ EEVEE Demo)

    Субтитры

    Тело гидры цилиндрической формы, на переднем конце тела (на околоротовом конусе) расположен рот, окружённый венчиком из 5-12 щупалец. У некоторых видов тело разделено на туловище и стебелёк. На заднем конце тела (стебелька) расположена подошва, с её помощью гидра передвигается и прикрепляется к чему-либо. Гидра обладает радиальной (одноосно-гетеропольной) симметрией. Ось симметрии соединяет два полюса - оральный, на котором находится рот, и аборальный, на котором находится подошва. Через ось симметрии можно провести несколько плоскостей симметрии, разделяющих тело на две зеркально симметричных половины.

    Тело гидры - мешок со стенкой из двух слоёв клеток (эктодермы и энтодермы), между которыми находится тонкий слой межклеточного вещества (мезоглея). Полость тела гидры - гастральная полость - образует выросты, заходящие внутрь щупалец . Хотя обычно считают, что у гидры есть только одно ведущее в гастральную полость отверстие (ротовое), на самом деле на подошве гидры имеется узкая аборальная пора. Через неё может выделяться жидкость из кишечной полости, а также пузырёк газа. При этом гидра вместе с пузырьком открепляется от субстрата и всплывает, удерживаясь вниз головой в толще воды. Таким способом она может расселяться по водоёму. Что касается ротового отверстия, то у не питающейся гидры оно фактически отсутствует - клетки эктодермы ротового конуса смыкаются и образуют плотные контакты, такие же, как и на других участках тела . Поэтому при питании гидре каждый раз приходится «прорывать» рот заново.

    Клеточный состав тела

    Эпителиально-мускульные клетки

    Эпителиально-мускульные клетки эктодермы и энтодермы образуют основную массу тела гидры. У гидры около 20 000 эпителиально-мускульных клеток.

    Клетки эктодермы имеют цилиндрическую форму эпителиальных частей и формируют однослойный покровный эпителий . К мезоглее прилегают сократимые отростки данных клеток, образующие продольную мускулатуру гидры.

    Эпителиально-мускульные клетки энтодермы направлены эпителиальными частями в полость кишки и несут по 2-5 жгутиков, которые перемешивают пищу. Эти клетки могут образовывать ложноножки, с помощью которых захватывают частицы пищи. В клетках формируются пищеварительные вакуоли.

    Эпителиально-мускульные клетки эктодермы и энтодермы представляют собой две независимые клеточные линии. В верхней трети туловища гидры они делятся митотически, а их потомки постепенно смещаются либо в сторону гипостома и щупалец, либо в сторону подошвы. По мере перемещения происходит дифференцировка клеток: так, клетки эктодермы на щупальцах дают клетки стрекательных батарей, а на подошве - железистые клетки, выделяющие слизь.

    Железистые клетки энтодермы

    Железистые клетки энтодермы выделяют в полость кишки пищеварительные ферменты, которые расщепляют пищу. Эти клетки образуются из интерстициальных клеток. У гидры около 5000 железистых клеток.

    Интерстициальные клетки

    Между эпителиально-мускульными клетками находятся группы мелких, округлых клеток, называемых промежуточными, или интерстициальными (i-клетки). У гидры их около 15 000. Это недифференцированные клетки. Они могут превращаться в остальные типы клеток тела гидры, кроме эпителиально-мускульных. Промежуточные клетки обладают всеми свойствами мультипотентных стволовых клеток. Доказано, что каждая промежуточная клетка потенциально способна дать как половые, так и соматические клетки. Стволовые промежуточные клетки не мигрируют, однако их дифференцирующиеся клетки-потомки способны к быстрым миграциям.

    Нервные клетки и нервная система

    Нервные клетки образуют в эктодерме примитивную диффузную нервную систему - рассеянное нервное сплетение (диффузный плексус). В энтодерме есть отдельные нервные клетки. Всего у гидры около 5000 нейронов . У гидры имеются сгущения диффузного плексуса на подошве, вокруг рта и на щупальцах. По новым данным, у гидры имеется околоротовое нервное кольцо, сходное с нервным кольцом, расположенным на крае зонтика у гидромедуз.

    У гидры нет четкого деления на чувствительные, вставочные и моторные нейроны. Одна и та же клетка может воспринимать раздражение и передавать сигнал эпителиально-мускульным клеткам. Тем не менее, есть два основных типа нервных клеток - чувствительные и ганглиозные. Тела чувствительных клеток расположены поперек эпителиального пласта, они имеют неподвижный жгутик, окружённый воротничком из микроворсинок, который торчит во внешнюю среду и способен воспринимать раздражение. Ганглиозные клетки расположены в основании эпителиально-мускульных, их отростки не выходят во внешнюю среду. По морфологии большинство нейронов гидры - биполярные или мультиполярные.

    В нервной системе гидры присутствуют как электрические, так и химические синапсы . Из нейромедиаторов у гидры обнаружены дофамин, серотонин, норадреналин, гамма-аминомасляная кислота, глютамат, глицин и многие нейропептиды (вазопрессин, вещество Р и др.).

    Гидра - наиболее примитивное животное, в нервных клетках которого обнаружены чувствительные к свету белки опсины . Анализ гена опсина гидры позволяет предположить, что опсины гидры и человека имеют общее происхождение .

    Стрекательные клетки

    Стрекательные клетки образуются из промежуточных только в области туловища. Сначала промежуточная клетка делится 3-5 раз, образуя кластер (гнездо) из предшественников стрекательных клеток (книдобластов), соединённых цитоплазматическими мостиками. Затем начинается дифференцировка, в ходе которой мостики исчезают. Дифференцирующиеся книдоциты мигрируют в щупальца. Стрекательные клетки наиболее многочисленные из всех клеточных типов, их у гидры около 55 000.

    Стрекательная клетка имеет стрекательную капсулу, заполненную ядовитым веществом. Внутрь капсулы ввёрнута стрекательная нить. На поверхности клетки находится чувствительный волосок, при его раздражении нить выбрасывается и поражает жертву. После выстреливания нити клетки погибают, а из промежуточных клеток образуются новые.

    У гидры есть четыре типа стрекательных клеток - стенотелы (пенетранты), десмонемы (вольвенты), голотрихи изоризы (большие глютинанты) и атрихи изоризы (малые глютинанты). При охоте первыми выстреливают вольвенты. Их спиральные стрекательные нити опутывают выросты тела жертвы и обеспечивают её удержание. Под действием рывков жертвы и вызванной ими вибрации срабатывают имеющие более высокий порог раздражения пенетранты. Шипы, имеющиеся у основания их стрекательных нитей, заякориваются в теле добычи, а через полую стрекательную нить в её тело вводится яд.

    Большое количество стрекательных клеток находится на щупальцах, где они образуют стрекательные батареи. Обычно в состав батареи входит одна крупная эпителиально-мускульная клетка, в которую погружены стрекательные клетки. В центре батареи находится крупная пенетранта, вокруг неё - более мелкие вольвенты и глютинанты. Книдоциты соединены десмосомами с мускульными волокнами эпителиально-мускульной клетки. Большие глютинанты (их стрекательная нить имеет шипы, но не имеет, как и у вольвент, отверстия на вершине), видимо, в основном используются для защиты. Малые глютинанты используются только при передвижении гидры для прочного прикрепления щупальцами к субстрату. Их выстреливание блокируется экстрактами из тканей жертв гидры.

    Выстреливание пенетрант гидры было изучено с помощью сверхвысокоскоростной киносъёмки. Оказалось, что весь процесс выстреливания занимает около 3 мс. В его начальной фазе (до выворачивания шипов) скорость его достигает 2 м/c, а ускорение составляет около 40 000 (данные 1984 года ); видимо, это один из самых быстрых клеточных процессов, известных в природе. Первым видимым изменением (менее чем через 10 мкс после стимуляции) было увеличение объёма стрекательной капсулы примерно на 10 %, затем объём снижается почти до 50 % от исходного. В дальнейшем выяснилось, что и скорость, и ускорение при выстреливании нематоцист были сильно недооценены; по данным 2006 года , на ранней фазе выстреливания (выбрасывание шипов) скорость этого процесса составляет 9-18 м/с, а ускорение составляет от 1 000 000 до 5 400 000 g. Это позволяет нематоцисте массой около 1 нг развивать на кончиках шипов (диаметр которых составляет около 15 нм) давление порядка 7 гПа, что сравнимо с давлением пули на мишень и позволяет пробивать достаточно толстую кутикулу жертв.

    Половые клетки и гаметогенез

    Как и всем животным, гидрам свойственна оогамия . Большинство гидр раздельнополы, но встречаются гермафродитные линии гидр. И яйцеклетки, и сперматозоиды образуются из i-клеток. Считается, что это особые субпопуляции i-клеток, которые можно отличить по клеточным маркерам и которые в небольшом количестве присутствуют у гидр и в период бесполого размножения.

    Дыхание и выделение

    Дыхание и выделение продуктов обмена происходит через всю поверхность тела животного. Вероятно, в выделении некоторую роль играют вакуоли, которые есть в клетках гидры. Главная функция вакуолей, вероятно, осморегуляторная ; они выводят излишки воды, которые постоянно поступают в клетки гидры путём осмоса .

    Раздражимость и рефлексы

    Гидры имеют сетчатую нервную систему. Наличие нервной системы позволяет гидре осуществлять простые рефлексы . Гидра реагирует на механическое раздражение, температуру, освещённость , наличие в воде химических веществ и на ряд других факторов внешней среды.

    Питание и пищеварение

    Гидра питается мелкими беспозвоночными - дафниями и другими ветвистоусыми, циклопами , а также олигохетами-наидидами. Есть данные о потреблении гидрами коловраток и церкарий трематод . Добыча захватывается щупальцами с помощью стрекательных клеток, яд которых быстро парализует мелких жертв. Координированными движениями щупалец добыча подносится ко рту, а затем с помощью сокращений тела гидра «надевается» на жертву. Пищеварение начинается в кишечной полости (полостное пищеварение), заканчивается внутри пищеварительных вакуолей эпителиально-мускульных клеток энтодермы (внутриклеточное пищеварение). Непереваренные остатки пищи выбрасываются через рот.
    Так как у гидры нет транспортной системы, а мезоглея (слой межклеточного вещества между экто- и энтодермой) достаточно плотная, возникает проблема транспорта питательных веществ к клеткам эктодермы. Эта проблема решается за счёт образования выростов клеток обоих слоёв, которые пересекают мезоглею и соединяются через щелевые контакты . Через них могут проходить мелкие органические молекулы (моносахариды, аминокислоты), что обеспечивает питание клеток эктодермы.

    Размножение и развитие

    При благоприятных условиях гидра размножается бесполым путём. На теле животного (обычно в нижней трети туловища) образуется почка, она растет, затем формируются щупальца и прорывается рот. Молодая гидра отпочковывается от материнского организма (при этом материнский и дочерний полипы прикрепляются щупальцами к субстрату и тянут в разные стороны) и ведёт самостоятельный образ жизни. Осенью гидра переходит к половому размножению. На теле, в эктодерме закладываются гонады - половые железы, а в них из промежуточных клеток развиваются половые клетки. При образовании гонад гидр формируется медузоидный узелок. Это позволяет предполагать, что гонады гидры - сильно упрощённые споросаки, последний этап в ряду преобразования утраченного медузоидного поколения в орган. Большинство видов гидр раздельнополы, реже встречается гермафродитизм . Яйцеклетки гидр быстро растут, фагоцитируя окружающие клетки. Зрелые яйцеклетки достигают диаметра 0,5-1 мм. Оплодотворение происходит в теле гидры: через специальное отверстие в гонаде сперматозоид проникает к яйцеклетке и сливается с ней. Зигота претерпевает полное равномерное дробление , в результате которого образуется целобластула. Затем в результате смешанной деламинации (сочетание иммиграции и деламинации) осуществляется гаструляция . Вокруг зародыша формируется плотная защитная оболочка (эмбриотека) с выростами-шипиками. На стадии гаструлы зародыши впадают в анабиоз . Взрослые гидры погибают, а зародыши опускаются на дно и зимуют. Весной продолжается развитие, в паренхиме энтодермы путём расхождения клеток образуется кишечная полость, затем формируются зачатки щупалец, и из-под оболочки выходит молодая гидра. Таким образом, в отличие от большинства морских гидроидных, у гидры отсутствуют свободноплавающие личинки, развитие у неё прямое.

    Рост и регенерация

    Миграция и обновление клеток

    В норме у взрослой гидры клетки всех трёх клеточных линий интенсивно делятся в средней части тела и мигрируют к подошве, гипостому и кончикам щупалец. Там происходит гибель и слущивание клеток. Таким образом, все клетки тела гидры постоянно обновляются. При нормальном питании «избыток» делящихся клеток перемещается в почки, которые обычно образуются в нижней трети туловища.

    Регенеративная способность

    Гидра обладает очень высокой способностью к регенерации . При разрезании поперек на несколько частей каждая часть восстанавливает «голову» и «ногу», сохраняя исходную полярность - рот и щупальца развиваются на той стороне, которая была ближе к оральному концу тела, а стебелек и подошва - на аборальной стороне фрагмента. Целый организм может восстанавливаться из отдельных небольших кусочков тела (менее 1/200 объёма), из кусочков щупалец, а также из взвеси клеток. При этом сам процесс регенерации не сопровождается усилением клеточных делений и представляет собой типичный пример морфаллаксиса.

    Гидра может регенерировать из взвеси клеток, полученных путём мацерации (например, при протирании гидры через мельничный газ). В экспериментах показано, что для восстановления головного конца достаточно образования агрегата из примерно 300 эпителиально-мускульных клеток. Показано, что регенерация нормального организма возможна из клеток одного слоя (только эктодермы или только энтодермы).

    Фрагменты разрезанного тела гидры сохраняют информацию об ориентации оси тела организма в структуре актинового цитоскелета : при регенерации ось восстанавливается, волокна направляют деление клеток. Изменение структуры актинового скелета может привести к нарушениям в регенерации (образованию нескольких осей тела) .

    Опыты по изучению регенерации и модели регенерации

    Местные виды

    В водоёмах России и Украины наиболее часто встречаются следующие виды гидр (в настоящее время многие зоологи выделяют кроме рода Hydra ещё 2 рода - Pelmatohydra и Chlorohydra ):

    • гидра длинностебельчатая (Hydra (Pelmatohydra) oligactis , синоним - Hydra fusca ) - крупная, с пучком очень длинных нитевидных щупалец, в 2-5 раз превышающих длину её тела. Эти гидры способны к очень интенсивному почкованию: на одной материнской особи порой можно встретить до 10-20 ещё не отпочковавшихся полипчиков.
    • гидра обыкновенная (Hydra vulgaris , синоним - Hydra grisea ) - Щупальца в расслабленном состоянии значительно превышают длину тела - приблизительно вдвое длиннее тела, а само тело сужается ближе к подошве;
    • гидра тонкая (Hydra circumcincta , синоним - Hydra attenuata ) - тело этой гидры имеет вид тонкой трубочки равномерной толщины. Щупальца в расслабленном состоянии не превышают длину тела, а если и превышают, то очень незначительно. Полипы мелкие, изредка достигают 15 мм. Ширина капсул голотрих изориз превышает половину их длины. Предпочитает жить поближе к дну. Почти всегда прикрепляется на сторону предметов, которая обращена ко дну водоёма.
    • гидра зелёная () с короткими, но многочисленными щупальцами, травянистого зелёного цвета.
    • Hydra oxycnida - щупальца в расслабленном состоянии не превышают длину тела, а если и превышают, то очень незначительно. Полипы крупные, достигают 28 мм. Ширина капсул голотрих изориз не превышает половины их длины.

    Симбионты

    У так называемых «зеленых» гидр Hydra (Chlorohydra) viridissima в клетках энтодермы живут эндосимбиотические водоросли рода Chlorella - зоохлореллы. На свету такие гидры могут длительное время (более четырёх месяцев) обходиться без пищи, в то время как искусственно лишённые симбионтов гидры без кормления погибают через два месяца. Зоохлореллы проникают в яйцеклетки и передаются потомству трансовариально . Другие виды гидр в лабораторных условиях иногда удается заразить зоохлореллами, однако устойчивого симбиоза при этом не возникает.

    Именно с наблюдений за зелёными гидрами начал свои исследования А. Трамбле .

    На гидр могут нападать мальки рыб, для которых ожоги стрекательных клеток, видимо, довольно чувствительны: схватив гидру, малёк обычно выплёвывает её и отказывается от дальнейших попыток съесть.

    К питанию тканями гидр приспособлен ветвистоусый рачок из семейства хидорид Anchistropus emarginatus .

    Тканями гидр могут также питаться турбеллярии микростомы , которые способны использовать непереваренные молодые стрекательные клетки гидр в качестве защитных клеток - клептокнид .

    История открытия и изучения

    Видимо, впервые описал гидру Антонио ван Левенгук . Подробно изучил питание, движение и бесполое размножение, а также регенерацию гидры

О реакции пресноводной гидры на экзогенные биологически активные (гормональные) соединения

С.М. Никитина, И.А. Ваколюк (Калининградский государственный университет)

Функционирование гормонов как важнейших регуляторов и интеграторов метаболизма и разнообразнейших функций в организме невозможно без существования систем специфической рецепции сигнала и его трансформации в конечный полезный эффект, то есть без гормонкомпетентной системы . Иными словами, наличие реакции на организменном уровне на экзогенные соединения невозможно без наличия циторецепции к этим соединениям и соответственно без существования у этих животных эндогенных соединений, родственных тем, которыми мы воздействуем. Это не противоречит концепции универсальных блоков , когда основные молекулярные структуры в функциональных системах живых организмов обнаруживаются практически в полном наборе уже на самых ранних этапах эволюции, какие только доступны изучению, представлены ограниченным числом молекул и осуществляют одноименные элементарные функции не только у представителей одного царства, например в разных группах млекопитающих или даже в разных типах, но и у представителей различных царств, в том числе у многоклеточных и одноклеточных, у высших эукариот и прокариот.

Однако следует обратить внимание на то, что данные о составе и функциях соединений, выполняющих роль гормонов у позвоночных животных, у представителей таксонов достаточно низкого филогенетического уровня только начинают появляться . Из групп животных низкого филогенетического уровня - гидра как представитель кишечнополостных является наиболее примитивным организмом, обладающим настоящей нервной системой. Нейроны различаются морфологически, химически и, вероятно, функционально. Каждый из них содержит нейросекреторные гранулы . Установлено значительное разнообразие нейрональных фенотипов у гидры. В гипостоме имеются упорядоченно расположенные группы по 6-11 синаптически связанных клеток, которые можно рассматривать как доказательство наличия у гидр примитивных нервных ганглиев. Кроме обеспечения поведенческих реакций, нервная система гидр выполняет роль эндокринной регуляторной системы , обеспечивая контроль метаболизма, размножения, развития. У гидр существует дифференцировка нервных клеток по составу содержащихся в них нейропептидов ). Предполагают , что молекулы окситоцина, вазопрессина, половых стероидов и глюкокортикоидов являются универсальными. Они найдены и у представителей кишечнополостных. Головной и подошвенный активаторы (и ингибиторы) выделены из метаноловых экстрактов тела гидр. Головной активатор, выделенный из актиний, аналогичен по составу и свойствам нейропептиду, обнаруженному в гипоталамусе и кишечнике коровы, крысы, свиньи, человека и в крови последнего. Кроме того, было показано, что и у беспозвоночных и у позвоночных в обеспечении реакции клеток на нейрогормоны участвуют циклические нуклеотиды, то есть механизм действия этих веществ в двух филогенетически различных линиях един.

Целью данного исследования, учитывая вышеизложенное, мы избрали изучение комплексного влияния на пресноводную гидру экзогенных биологически активных (гормональных) соединений.

Материал и методы исследования

Животных для эксперимента собирали в июне-июле 1985-1992 гг. на стационаре (протока реки Немонин, поселок Матросово Полесского района). Адаптация к содержанию в лабораторных условиях - 10-14 суток. Объем материала: тип - Coelenterata; класс - Hydrozoa; вид - Hydra oligactis Pallas; количество - 840. Количество животных отражено в начале эксперимента и не учитывается прирост численности.

В работе были использованы водорастворимые гормональные соединения окситоцинового ряда, передней доли гипофиза с исходной активностью в 1 мл (ип) (гифотоцин - 5ЕД, питуитрин - 5ЕД, маммофизин - 3ЕД, префизон - 25ЕД, гонадотропин - 75ЕД) и стероид - преднизолон - 30 мг, которые у позвоночных обеспечивают трехзвенную эндокринную регуляцию, включающую гипоталамо-гипофизарный комплекс и эпителиальные железы.

В предварительных опытах были использованы концентрации препаратов от 0,00002 до 20 мл ип/л среды содержания животных.

Проводилось три группы исследования:

1-я - определение "+" или "-" реакции во всех принятых нами концентрациях;

2-я - определение диапазона концентраций, обеспечивающих работу в хроническом режиме разной продолжительности;

3-я - хронический эксперимент.

В эксперименте учитывалась активность почкования гидры. Полученные данные подвергались стандартной статистической обработке.

Результаты исследований

При определении "±" реакции гидр в широком диапазоне концентраций соединений были отобраны три (0,1 мл ип/л среды, 0,02 мл ип/л среды и 0,004 мл ип/л среды).

В контрольной группе гидр в течение пяти суток почкование оставалось на уровне 0,0- 0,4 почки /гидру (Ра). В среде минимальной концентрации префизона прирост был 2,2 особи/гидру, питуитрина - 1,9 особи/гидру (достоверность различий с контролем крайне высока - с уровнем значимости 0,01). В средних концентрациях хорошо себя проявили гифотоцин, маммофизин и префизон (1,8-1,9 особей/гидру). Преднизолон в минимальной, и особенно в средней концентрации, вызвал прирост численности 1,1-1,3 особи/гидру, что значительно превышает контроль.

В следующем эксперименте использованы только оптимальные концентрации гормональных соединений. Продолжительность эксперимента - 9 суток. К началу опыта по значению Ра контрольная и экспериментальная группы достоверно не различимы. Через девять суток эксперимента значения Ра достоверно отличалось в опытных группах и контроле с уровнем значимости 0,05 (табл. 1).

Таблица 1

Влияние гормональных препаратов на почкование гидры (Ра) и вероятность достоверности их различий (р)

Как видно из таблицы, наибольшее значение Ра получено при содержании животных в преднизолоне. Все пептидные препараты дают приблизительно сходные значения Ра (в среднем 3,8±0,5). Однако и здесь есть разброс. Наилучший эффект (4,3±1,4) достигается при содержании животных в среде с очищенным экстрактом нейрогипофиза - гифотоцином. Близок к нему по степени воздействия маммофизин. В экспериментальных группах с питуитрином и префизоном значения величины Ра равны 3,7±1,5 и 3,8±1,3 соответственно. Наименьший эффект дает воздействие на гидр гонадотропином. Недостоверные различия в Ра возникают к концу первых суток после помещения гидр в растворы гормональных препаратов. На протяжении девяти суток эксперимента Ра в контроле не изменяется. Начиная с третьих суток Ра во всех экспериментальных группах существенно превышает Ра в контроле. Следует отметить постепенное достоверное увеличение этого показателя у экспериментальных групп к девятым суткам.

Для оценки статистической достоверности оказываемых воздействий сравнивались значения критерия F (отношение средних квадратов), полученные для каждого из двух факторов в отдельности (А - фактор длительности содержания; В - фактор воздействия) и для их взаимодействия (А+В), и табличные значения критерия для двух уровней значимости Р=0,05 и Р=0,01 (табл. 2).

Таблица 2

Результаты дисперсионного анализа влияния гормональных препаратов и длительности содержания на интенсивность бесполого размножения Hydra oligactis

Как видно из таблицы, Fфакт для фактора воздействия при уровне значимости 0,05 во всех экспериментальных группах больше Fтабл, а при уровне значимости 0,01 такая картина наблюдается в группах с питуитрином, гифотоцином, префизоном и преднизолоном, причем степень воздействия в группе с преднизолоном самая высокая, намного больше, чем в группах с питуитрином, гифотоцином и префизоном, имеющих сходную силу воздействия (значения Fфакт очень близки). Влияние взаимодействия факторов А и В во всех экспериментальных группах не является доказанным.

Для фактора А Fфакт меньше Fтабл (при обоих уровнях значимости) в группах с маммофизином и преднизолоном. В группах с гифотоцином и гонадотропином Fфакт больше Fтабл при Р=0,05, то есть влияние этого фактора не может считаться окончательно доказанным, в отличие от экспериментальных групп с питуитрином и префизоном, где Fфакт больше Fтабл и при Р=0,01 и при Р=0,05.

Все гормональные препараты, кроме гонадотропина, в той или иной степени задерживают начало бесполого размножения. Однако статистически достоверным это оказывается только в группе с префизоном (Р=0,01). Использованные в эксперименте гормональные препараты достоверно не влияют на продолжительность развития единственной почки, изменяют взаимное влияние первой и второй почек: питуитрин, маммофизин, префизон, гонадотропин - при наличии только сформированного головного отдела развивающихся почек; питуитрин, гонадотропин и преднизолон - при наличии хотя бы одного сформированного подошвенного отдела развивающихся почек.

Таким образом, можно считать установленной чувствительность гидр к широкому спектру гормональных соединений позвоночных и предположить, что экзогенные гормональные соединения включаются (как синергисты или антагонисты) в эндокринный регуляторный цикл, присущий самой гидре.

Список литературы

1. Перцева М.Н. Межмолекулярные основы развития гормонкомпетентности. Л.: Наука, 1989.

2. Богута К.К. Некоторые морфологические принципы формирования низкоорганизованных нервных систем в онто- и филогенезе // Успехи современной биологии. М.: Наука, 1986. Т. 101. Вып. 3.

3. Иванова-Казас А.А. Бесполое размножение животных. Л., 1971.

4. Наследов Г.А. Многовариантность осуществления элементарных функциональных задач и упрощение системы молекулярных взаимодействий как закономерность функциональной эволюции // Журнал эволюционной биохимии и физиологии. 1991. Т. 27. № 5.

5. Наточин Ю.В., Бройнлих Х. Использование методов токсикологии в изучении проблемы эволюции функций почки // Журнал эволюционной биохимии и физиологии. 1991. Т. 27. № 5.

6. Никитина С.М. Стероидные гомоны у беспозвоночных животных: Монография. Л.: Изд-во ЛГУ, 1987.

7. Афонькин С.Ю. Межклеточное самораспознование у простейших // Итоги науки и техники. М., 1991. Т. 9.

8. Проссер Л. Сравнительная физиология животных. М.: Мир, 1977. Т. 3.

9. Резников К.Ю., Назаревская Г.Д. Стратегия развития нервной системы в онто- и филогенезе. Гидра // Успехи современной биологии. М.: Наука, 1988. Т. 106. Вып.2 (5).

10. Шейман И.М., Балобанова Э.Ф., Пептидные гормоны беспозвоночных // Успехи современной биологии. М.: Наука, 1986. Т. 101. Вып. 2.

11. Этингоф Р.Н. Изучение молекулярной структуры нейрорецепторов. Методические подходы, эволюционные аспекты // Журнал эволюционной биохимии и физиологии. 1991. Т. 27. № 5.

12. Highnam K.C., Hill L. The comparative Endocrinology of the Invertebrates // Edward Arnold, 1977.

Понравилась статья? Поделитесь с друзьями!