Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R

Закон идеального газа.

Экспериментальный:

Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1) :

V~1/P , при T=const.

Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684) , его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:

V~T , при Р =const.

График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Р ~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P , V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

Где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро N A . В настоящее время установлено, что число Авогадро равно:

N A =(6,022045 ± 0,000031) · 10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N = nN A), закон идеального газа можно переписать следующим образом:

Где k называется постоянной Больцмана и имеет значение равное:

k= R/N A =(1,380662 ± 0,000044) · 10 -23 Дж/К

Справочник компрессорной техники

Страница 43

Чаще всего на практике используют зависимость объема жидкости (ртути или спирта) от температуры.

При градуировке термометра обычно за начало отсчета (0) принимают температуру тающего льда; второй постоянной точкой (100) считают температуру кипения воды при нормальном атмосферном давлении (шкала Цельсия).

Так как различные жидкости расширяются при нагревании неодинаково, то установленная таким образом шкала будет до некоторой степени зависеть от свойств данной жидкости.

Конечно, 0 и 100°С будут совпадать у всех термометров, но 50°С совпадать не будут.

В отличие от жидкостей все разреженные газы расширяются при нагревании одинаково и одинаково меняют свое давление при изменении температуры. Поэтому в физике для установления рациональной температурной шкалы используют изменение давления определенного количества разреженного газа при постоянном объеме или изменение объема газа при постоянном давлении.

Такую шкалу иногда называют идеальной газовой шкалой температур.

При тепловом равновесии средняя кинетическая энергия поступательного движения молекул всех газов одинакова. Давление прямо пропорционально средней кинетической энергии поступательного движения молекул: p = n

При тепловом равновесии, если давление газа данной массы и его объем фиксированы, средняя кинетическая энергия молекул газа должна иметь строго определенное значение, как и температура.

Т.к. концентрация молекул в объеме газа n = , то p = или = .

Обозначим = Θ.

Величина Θ растет с повышением температуры и ни от чего, кроме температуры не зависит.

Отношение произведения давления газа на его объем к числу молекул при одинаковой температуре одинаково практически для всех разряженных газов (близких по свойствам к идеальному газу):

При высоких давлениях соотношение нарушается.

Определенная таким образом температура называется абсолютной.

На основании формулы вводится температурная шкала не зависящая от характера вещества, используемого для измерения температуры.

Важнейшим макроскопическим параметром, характеризующим стационарное равновесное состояние любого тела, является температура.

Температура – мера средней кинетической энергии хаотического поступательного движения молекул. тела.

Из основного уравнения МКТ в форме = и определения температуры в форме = kT следует важнейшее следствие:

Абсолютная температура есть мера средней кинетической энергии движения молекул.

Средняя кинетическая энергия хаотического поступательного движения молекул пропорциональна термодинамической (или абсолютной температуре):

KT Þ = kT Þ == kT

Чем выше температура, тем быстрее движутся молекулы.

k = 1,38*10-23 Дж/К – постоянная Больцмана

Постоянная Больцмана является коэффициентом, переводящим температуру из градусной меры (К) в энергетическую (Дж) и обратно.

Единица термодинамической температуры – К (Кельвин)

Кинетическая энергия не может быть отрицательной. Следовательно не может быть отрицательной и термодинамическая температура. Она обращается в нуль, когда кинетическая энергия молекул становится равной нулю.

Абсолютный нуль (0К) – температура, при которой должно прекратиться движение молекул.

Для оценки скорости теплового движения молекул в газе рассчитаем средний квадрат скорости:

Произведение kNa = R = 8,31 Дж/(моль*К) называется молярной газовой постоянной

Средняя квадратичная скорость молекул:

Эта скорость близка по значению к средней и наиболее вероятной скорости и дает представление о скорости теплового движения молекул в идеальном газе.

При одинаковой температуре скорость теплового движения молекул газа тем выше, чем ниже его М. (При 0оС скорость молекул составляет несколько сот м/с)

При одинаковых давлениях и температурах концентрация молекул всех газов одна и та же:

KT Þ p = nkT , где n = N/V – концентрация молекул в данном объеме

Отсюда следует закон Авогадро:

в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул.

Шкала Цельсия – опорная точка – температура таяния льда 0оС, температура кипения воды – 100оС

Шкала Кельвина - опорная точка – абсолютный нуль – 0оК (-273,15оС)

tоК = tоС -273

Шкала Фаренгейта – опорная точка – наименьшая температура, которую Фаренгейту удалось получить из смеси воды, льда и морской соли – 0оF , верхняя опорная точка – температура тела человека - 96 оF

УТОЧНИТЬ

УРАВНЕНИЕ КЛАЙПЕРОНА-МЕНДЕЛЕЕВА(уч.10кл.стр.248-251)

(Уравнение состояния идеального газа)

Основное уравнение молекулярно-кинетической теории идеального газа(уч.10кл.стр.247-248)

Переход от микроскопических параметров газа к макроскопическим

Постоянная Лошмидта – смысл и единицы измерения

Среднее расстояние между частицами идеального газа

Уравнение состояния идеального газа – Клайперона-Менделеева

Универсальная газовая постоянная

Физический смысл уравнения Клайперона-Менделеева

p = n - основное уравнение МКТ идеального газа

Перейти на страницу: 43

Зависимость объема фиксированной массы идеального газа от температуры при постоянном давлении

Анимация

Описание

Закон идеального газа, согласно которому объем данной массы газа при постоянном давлении меняется линейно в зависимости от изменения температуры:

V t = V 0 (1+a t ),

где V 0 - объем газа при 00 С;

V t - объем газа при температуре t, измеренной по шкале Цельсия;

a - термический коэффициент объемного расширения.

a» 1/273(° С )-1

Закон Гей-Люссака может быть записан в виде:

V=V 0 a T ,

где Т - абсолютная температура, выраженная в К (Кельвинах);

V 0 - объем газа при Т = 273 К .

Очевидно, закон Гей-Люссака неприменим вблизи абсолютного нуля температуры.

Зависимость объема газа от температуры при постоянном давлении представлена на рис. 1.

Изобары идеального газа

Рис. 1

Поскольку закон Гей-Люссака справедлив для идеальных газов, реальные газы подчиняются ему в достаточно разреженном равновесном состоянии, когда давление и температура далеки от критических значений, при которых начинается cжижение.

Для большинства газов при комнатной температуре давление может изменяться от 10-6 до 102 атм.

Закон носит эмпирический характер, т.к. был получен путем обобщения результатов физических экспериментов.

Закон был опубликован в 1802 г. Жозефом Луи Гей-Люссаком (1778-1850). При этом Гей-Люссак настоял на том, чтобы он носил имя Жака Александра Цезара Шарля (1746-1823), который открыл этот закон в 1787 году, но не опубликовал его.

Временные характеристики

Время инициации (log to от -10 до -8);

Время существования (log tc от -10 до 15);

Время деградации (log td от -10 до -8);

Время оптимального проявления (log tk от -8 до -8).

Диаграмма:

Технические реализации эффекта

Газовый термометр постоянного давления

Техническая реализация - газовый термометр постоянного давления. Предложен в 1851 г. Уильямом Томсоном (лордом Кельвином) для реализации абсолютной шкалы температур. В качестве рабочего тела был выбран воздух, но может быть пригоден любой другой газ, вдали от точки ожижения.

Применение эффекта

Газовый термометр постоянного давления используют в лабораторной практике для градуировки термометров по шкале Кельвина.

Кроме того, на том же принципе основано устройство термоскопа (рис. 2) - малого тела, служащее для констатации одинаковости или различия температур двух или нескольких тел.

Принципиальные схемы термоскопа

Рис. 2

Термоскоп представляет собой полый стеклянный шар малого объема, соединенный с тонкой стеклянной трубкой, в которой имеется пробка из жидкости (ртути).

При соприкосновении шарика термоскопа с исследуемым телом меняется объем содержащегося внутри него воздуха. Изменение объема воздуха констатируется с помощью жидкостного манометра или по перемещению столбика ртути в трубке, соединенной с шариками.

Литература

1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1979.- Т.2. Термодинамика и молекулярная физика.- С.18-28.

2. Липман Г. Великие эксперименты в физике; Пер. с англ.- М.: Мир, 1972.- С.45-58.

Ключевые слова

  • идеальный газ
  • объем
  • температура
  • давление

Разделы естественных наук:

Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • ниже -100°C и выше температуры диссоциации / разложения
  • выше 90 бар
  • глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

  • в СИ R= 8,3144 Дж/(моль*К) - это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
  • в СГС R= 8,3144*10 7 эрг/(моль*К) - это основная (но не единственная) научная система измерений в мире
  • m -масса газа в (кг)
  • M -молярная масса газа кг/моль (таким образом (m/M) - число молей газа)
  • P -давление газа в (Па)
  • Т -температура газа в (°K)
  • V -объем газа в м 3

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) - что верно для большинства газов в указанных выше .

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

V 1 и V 2 , при температурах, соответственно, T 1 и T 2 и, пусть T 1 < T 2 . Тогда мы знаем, что:

Естественно, V 1 < V 2

  • показатели объемного счетчика газа тем "весомее", чем ниже температура
  • выгодно поставлять "теплый" газ
  • выгодно покупать "холодный" газ

Как с этим бороться? Необходима хотя бы простая температурная компенсация, т.е в считающее устройство должна подаваться информация с дополнительного датчика температуры.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется скорость газа.

Пусть счетчик () в точке доставки дает объемные накопленные расходы V 1 и V 2 , при давлениях, соответственно, P 1 и P 2 и, пусть P 1 < P 2 . Тогда мы знаем, что:

Естественно, V 1 >V 2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем "весомее", чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

В заключение, хотелось бы отметить, что, теоретически, каждый газовый счетчик должен иметь и температурную компенсацию и компенсацию по давлению. Практически же......

Как и все тела, газы при нагревании расширяются, причём весьма заметно даже при незначительном нагревании. Это легко обнаружить на следующем простом опыте.

Колба А соединяется с расположенной горизонтально трубкой CD, которая укреплена вдоль шкалы. Внутри этой трубки находится небольшой столбик ртути. Достаточно к колбе прикоснуться рукой, как столбик ртути в трубке CD начнёт двигаться.

При охлаждении колбы столбик ртути перемещается влево, а при нагревании – вправо; следовательно, газ при охлаждении сжимается, а при нагревании расширяется. Зная объём колбы и диаметр трубки, можно измерить увеличение объёма газа.

Постепенно нагревая газ в колбе, можно установить, что при постоянном давлении изменение объёма данной массы газа прямо пропорционально изменению температуры. Поэтому тепловое расширение газа, так же как и других тел, можно охарактеризовать при помощи коэффициента объёмного расширения.

Пусть при температуре 0° С объём газа равен V 0 , а при температуре t – объём V t . Увеличение объёма, приходящееся на каждую единицу объёма, взятого при 0° С, при нагревании на один градус будет равно:

? = V t – V 0 /V 0 t

V t = V 0 (1 + ?t) (1)

Величина а, входящая в написанные выше формулы, называется коэффициентом объёмного расширения газа.

Жозеф Луи Гей-Люссак (1778– 1850) – один из выдающихся французских химиков и физиков . Он открыл ряд важных химических и физических законов, из которых в физике широко известен закон одинакового расширения газов и паров при одинаковом повышении температуры.

Французский учёный Гей-Люссак, исследуя на опыте тепловое расширение газов, открыл, что коэффициент объёмного расширения у всех газов при постоянном давлении одинаков и численно равен 1 / 273 град -1 .

В этом отношении расширение газов при нагревании отличается от расширения твёрдых и жидких тел, где, коэффициент объёмного расширения зависит от химического состава тел.

Положим в формуле (1):

t = 1°С, ? = 273 град -1

Мы получим: V t = V 0 + 1 / 273 · V 0 откуда следует, что при нагревании на 1 град под постоянным давлением объём данной массы газа увеличивается на 1 / 273 того объёма, который газ занимал при 0°C. Этот закон получил название закона Гей-Люссака.

Процессы, подобные рассмотренному, протекающие при постоянном давлении, называются изобарными .

Формула (1) показывает, что объём газа при температуре равен произведению его объёма, взятого при 0°С, на двучлен объёмного расширения (1 + ?t).

Пример 1. Объём некоторой массы газа при 0° С равен 10 л. Найти объём его при t = 273° С, если давление постоянно.

По условиям задачи нам известен объём газа при 0° С, т. е. V 0 = 10 л; подставляя числовые данные задачи в формулу V t = V 0 (1 + ?t), найдём, что

V t = 10 (1 + 273 / 273) л = 20 л

Пример 2. При температуре 273° С объём некоторой массы газа равен 10 л. Чему будет равен объём этого газа при температуре t 2 = 546° С, если давление постоянно?

Нам известен объём газа при температуре 273° С; чтобы определить объём этого газа при t 2 = 546° С, надо предварительно найти его объём при 0° С.

Этот объём найдём из равенства:

10 л = V 0 (1 + 1 / 273 · 273) л

V 0 = 10 л / 2 = 5 л

Найдём теперь объём газа при 546° С:

V t = 5 (1 + 1 / 273 · 546) л = 15 л

Понравилась статья? Поделитесь с друзьями!