Регуляция мозгового кровообращения. Механизмы регуляции мозгового кровообращения и компенсации его нарушений

Среди соматических органов головной мозг особенно чувствителен к гипок­сии и наиболее уязвимый в случае ишемии по нескольким причинам: во-первых, в связи с высокими энергетическими потребностями ткани мозга, во-вторых из-за отсутствия тканевого депо кислорода; в-третьих - в связи с отсутствием ре­зервных капилляров. Если величина мозгового кровотока снижается до 35-40 мл на 100 г вещества мозга в 1 мин, то из-за наступающего дефицита кислорода нару­шается расщепление глюкозы, а это приводит к накоплению молочной кислоты, развитию ацидоза, к гемореологическим и микроциркуляторным нарушениям, возникновению обратимого неврологического дефицита.

Адекватное кровоснабжение головного мозга обеспечивается механиз­мами ауторегуляции. Термин «ауторегуляция мозгового кровообращения» используют для обозначения возможности гомеостатических систем орга­низма поддерживать тканевой мозговой кровоток на постоянном уровне независимо от изменений системного АД, метаболизма, влияния вазоактивных лекарственных средств.

Регуляция мозгового кровообращения обеспечивается комплексом миогенного, метаболического и неврогенного механизмов.

Мишенный механизм заключается в том, что повышение АД приводит к сокращению мышечного слоя сосудов, и наоборот, снижение АД вызывает снижение тонуса мышечных волокон и расширение просвети сосудов (эф­фект Остроумова-Бейлиса). Миогенный механизм может осуществляться во время колебания среднего АД в диапазоне 60-70 и 170 180 мм рт. ст. Если АД снижается до 50 мм рт. ст. или возрастает выше чем до 180 мм рт.ст. появляется пассивная зависимость АД - мозговой кровоток, т. е. возникает срыв реакции ауторегуляции мозгового кровообращения.

Какие же механизмы защищают головной мозг от избыточной перфузии? Оказывается, что такими механизмами являются рефлекторные изменения тонуса внутренних сонных и позвоночных артерий. Они не только регули­руют объем крови, которая поступает в сосуды мозга, но и обеспечивают постоянство ее притока независимо от изменений уровня общего АД. Миогенная ауторегуляция тесно взаимосвязана с уровнем венозного давления и давления спинномозговой жидкости. Миогенный механизм ауторегуляции включается мгновенно, но он непродолжителен - от 1 с до 2 мин, а затем по­давляется изменениями метаболизма.

Метаболический механизм ауторегуляции предусматривает тесную связь кровоснабжения мозга с его метаболизмом. Эту функцию обеспечивают артерии мягкой мозговой оболочки, которые широко разветвляются на по­верхности мозга. Он осуществляется гуморальными факторами и продукта­ми метаболизма ткани мозга. Однако ни миогенный, ни метаболический ме­ханизмы самостоятельно не могут обеспечить сложные процессы регуляции тонуса мозговых сосудов и поддерживать мозговой кровоток на постоянном уровне. По-видимому, механизмы ауторегуляции осуществляются за счет взаимодействия двух факторов: миогенного рефлекса сосудистой стенки в ответ на изменения перфузионного давления и действия таких метаболитов мозговой ткани, как 0 2 и С0 2 , а также ионов калия, кальция, водорода.

В регуляции мозгового кровотока участвует также неврогенный меха­низм, но значение его окончательно не изучено.

Ауторегуляция мозгового кровообращения легко нарушаемый ме­ханизм, который может поражаться в результате гипоксии, гиперкапнии, резкого повышения или снижения АД. Срыв реакции ауторегуляции это состояние, при котором тканевый мозговой кровоток пассивно зависит от системного АД. Это может сопровождаться синдромами избыточной перфу­зии (luxury perfusion syndrome) и реактивной гиперемии.

2.1 Ауторегуляция мозгового кровообращения

Важнейшей особенностью кровоснабжения мозга является феномен ауторегуляции - способность поддерживать своё кровоснабжение в соответствиями с метаболическими потребностями независимо от колебаний системного артериального давления. У здоровых людей МК остаётся неизменным при колебаниях АДср от 60 до 160 мм рт.ст. Если АДср выходит за границы этих значений, то ауторегуляция МК нарушается. Увеличение АДср до 160 мм рт.ст. и выше вызывает повреждение гематоэнцефалического барьера, чреватое отёком мозга и геморрагическим инсультом.

При хронической артериальной гипертонии кривая ауторегуляции мозгового кровообращения смещается вправо, причём сдвиг захватывает и нижнюю, и верхнюю границы. При артериальной гипертонии снижение АД до обычных значений (меньше изменённой нижней границы) приводит к уменьшению МК, в то время как высокое АД не вызывает повреждение мозга. Длительная гипотензивная терапия может восстановить ауторегуляцию МК в физиологических границах.

Регуляция мозгового кровообращения осуществляется посредством следующих механизмов:

1)метаболический - главный механизм, обеспечивающий соответствие мозгового кровотока энергетическим потребностям конкретной функциональной зоны и мозга в целом. Когда потребность мозга в энергетических субстратах превышает их доставку, в кровь выделяются тканевые метаболиты, которые вызывают церебральную вазодилятацию и увеличение МК. Этот механизм опосредуют ионы водорода, а также другие вещества - оксид азота (NO), аденозин, простагландин и, возможно, градиенты ионной концентрации.

2)нейрогенный и нейрогуморальный механизмы - обеспечиваются симпатическими (вазоконстрикторными), парасимпатическими (вазодилатирующими) и нехолинергическими неадренергическими волокнами; нейротрансмиттеры в последней группе - серотонин и вазоактивный интестинальный пептид. Функция вегетативных волокон сосудов мозга в физиологических условиях неизвестна, но продемонстрировано их участие при некоторых патологических состояниях. Так, импульсация по симпатическим волокнам из верхних симпатических ганглиев может значительно сузить крупные мозговые сосуды и уменьшить МК. Вегетативная иннервация мозговых сосудов играет важную роль в возникновении церебрального вазоспазма после ЧМТ и инсульта.

3)миогенный механизм реализуется посредством способности гладкомышечных клеток церебральных артериол сокращаться и расслабляться в зависимости от АДср. Этот механизм эффективен в пределах среднего АД от 60 до 160 мм рт.ст. (у нормотоников). Повышение среднего АД выше 160 мм рт.ст. ведёт к расширению сосудов мозга, нарушению гематоэнцефалического барьера (ГЭБ), отёку и ишемии головного мозга, а снижение среднего АД ниже 60 мм рт.ст. - к максимальному расширению сосудов мозга и пассивному кровотоку. Необходимо заметить, что фоновый симпатический тонус предотвращает максимальную вазодилятацию, поэтому ауторегуляция может сохраняться и при значениях АДср<60 мм рт.ст. на фоне хирургической или фармакологической симпатэктомии. Ауторегуляция не происходит мгновенно.

4)механический тип регуляции обеспечивает возрастание сосудистой резистентности (в ответ на повышение внутрисосудистого давления) увеличением тканевого давления вследствие экстракапиллярного пропотевания жидкости. Этот механизм в большой степени может объяснить феномен «ложной ауторегуляции» при отёке головного мозга и внутричерепной гипертензии.

Ауторегуляция не является мгновенным процессом, так как при быстром снижении АД мозговой кровоток восстанавливается до исходного уровня в течение от 30 с до 3-4 мин.

Рассматривая цереброваскулярные заболевания, важно остановиться на основах динамики мозгового кровообращения. Мы используем термин динамика, поскольку прежние представления о кровоснабжении головного мозга несколькими концевыми артериями оказались неверными. Мозговое кровообращение определяют три фактора: строение сосудистой системы, функционирование коллатералей и мозговой кровоток.

Строение сосудистой системы головного мозга

Кровоснабжение головного мозга осуществляется двумя системами: каротидной и вертебробазилярной, соединенными виллизиевым кругом. Следует заметить, что классическое, описанное в учебниках строение виллизиева круга встречается редко, так как у 85% людей имеются варианты развития этого анастомоза. Виллизиев круг может быть незамкнутым, некоторые составляющие его сосуды могут отсутствовать или быть очень тонкими.

Коллатеральный кровоток

Крупные артерии, кровоснабжающие полушария и ствол мозга (передние, средние и задние мозговые артерии соединены множеством коллатеральных сосудов. Уже упомянутый виллизиев круг связывает каротидную и вертебробазилярную системы, другие коллатерали - вне- и внутричерепные сосуды.

Благодаря разветвленной системе коллатералей при окклюзии, например, средней или задней мозговой артерии, большая часть их бассейна продолжает получать кровь. Поэтому большинство инфарктов занимают меньшую площадь, чем бассейн пораженного сосуда. В участках на стыке анастомозов двух сосудистых бассейнов (в зонах смежного кровоснабжения) возможны инфаркты при частичной окклюзии двух мозговых артерий.

Недостаток кровоснабжения из-за окклюзии одной из мозговых артерий может компенсироваться перераспределением кровотока в виллизиевом круге. Например, кровь в переднюю мозговую артерию может поступать с противоположной стороны через переднюю соединительную артерию.

Благодаря коллатералям головной мозг может получать кровь и из внечерепных сосудов. Так, окклюзия внутренней сонной артерии редко приводит к слепоте, поскольку кровь в глазную артерию начинает поступать из наружной сонной артерии. При окклюзии мозговых артерий кровоток в менингеальных, затылочных и сонно-барабанных артериях, щитошейном и реберно-шейном стволах может менять свое направление, а сами эти сосуды - расширяться, компенсируя недостаточный приток крови к головному мозгу.

Разветвленная система коллатералей реагирует на изменение кровотока почти немедленно. Этим и объясняются некоторые кажущиеся странными случаи, когда инсульт не развивается, несмотря на все предпосылки. На эффективность коллатерального кровообращения влияет следующее.

  1. Анатомия коллатералей. У некоторых людей коллатерали недоразвиты. Так, агенезия одной из задних соединительных артерий повышает риск ишемического инсульта в затылочной доле на этой стороне при окклюзии в вертебробазилярной системе. Отсутствие задней соединительной артерии не позволяет крови поступать из каротидной системы в вертебробазилярную.
  2. Площадь поперечного сечения. Если суммарная площадь поперечного сечения коллатералей равна площади поперечного сечения закупоренной артерии, то кровоснабжение через анастомоз, скорее всего, будет достаточным.
  3. Состояние сосудистой системы в целом. Так, резервы коллатерального кровотока снижаются при атеросклерозе.
  4. Скорость сужения просвета сосуда. При внезапной окклюзии анастомозы не успевают компенсировать нарушенное кровоснабжение, тогда как постепенное сужение просвета сосуда лучше компенсируется коллатералями, в связи с чем неврологические нарушения минимальны или отсутствуют.

Мозговой кровоток

Регуляция мозгового кровотока имеет свои особенности. Симпатические волокна хотя и присутствуют, их роль невелика: возможно, они участвуют лишь в регуляции АД в крупных сосудах виллизиева круга. Постоянство мозгового кровотока обеспечивается главным образом ауторегуляцией. Последняя представляет собой особый механизм, основанный на изменении диаметра сосудов в ответ на гемодинамические или метаболические сдвиги.

При снижении АД церебральные сосуды расширяются, и мозговой кровоток остается неизменным. При артериальной гипертонии они, наоборот, сужаются. Лишь в крайних случаях ауторегуляция нарушается и мозговой кровоток снижается.

Мозговой кровоток в значительной степени зависит от изменения содержания СО2 в артериальной крови. В головном мозге СО2 - самый сильный сосудорасширяющий фактор. Повышение РаО2 и алкалоз вызывают сужение сосудов, однако они (так же как колебания АД) влияют на мозговой кровоток слабее, чем СО2. Лекарственные средства мало влияют на мозговой кровоток. Роль ВЧД, сна, рН СМЖ и температуры тела также сравнительно невелика.

Вернуться к номеру

Нарушение ауторегуляции мозгового кровотока как фактор развития мозговых дисциркуляций при сахарном диабете 2-го типа

Авторы: Е.Л. Товажнянская, О.И. Дубинская, И.О. Безуглая, М.Б. Наврузов Кафедра неврологии Харьковского национального медицинского университета Научно-практический медицинский центр ХНМУ

Сосудистые заболевания головного мозга остаются одной из острейших и глобальных медико-социальных проблем, наносящих огромный экономический ущерб обществу. В Украине львиная доля (95 %) цереброваскулярных заболеваний (ЦВЗ) принадлежит хроническим нарушениям мозгового кровообращения, рост частоты встречаемости которых в основном и предопределяет увеличение распространенности ЦВЗ в нашей стране. Тенденция к постарению населения планеты и увеличение в популяции числа основных факторов риска развития сосудистых заболеваний головного мозга (артериальная гипертензия (АГ), болезни сердца, сахарный диабет (СД), гиперхолестеринемия, гиподинамия, курение и другие) обусловливают дальнейший рост ЦВЗ на ближайшие десятилетия .

Известно, что важнейшим независимым фактором риска развития всех форм ЦВЗ является сахарный диабет — одно из самых распространенных заболеваний среди людей среднего и пожилого возраста. СД поражает в среднем от 1,2 до 13,3 % населения планеты и является причиной около 4 млн смертей ежегодно во всем мире. Наиболее часто в структуре СД (90-95 %) встречается сахарный диабет 2-го типа. По оценкам Всемирной организации здравоохранения, число лиц, страдающих сахарным диабетом, в мире составляет более 190 млн, а к 2025 году эта цифра возрастет до 330 млн. В Украине на сегодняшний день зарегистрировано более 1 млн пациентов, страдающих сахарным диабетом. Однако данные эпидемиологических исследований показали, что истинное число больных в 2-2,5 раза выше .

На основании проведенных широкомасштабных исследований было установлено, что СД повышает риск развития мозгового инсульта в 2-6 раз, транзиторных ишемических атак — в 3 раза по сравнению с таковым риском в общей популяции. Кроме того, СД отводится важная роль в формировании хронической прогрессирующей недостаточности мозгового кровообращения — диабетической энцефалопатии (ДЭ) и сосудистой деменции. Риск развития сердечно-сосудистых катастроф значительно увеличивается при сочетании СД с другими факторами риска (АГ, дислипидемия, ожирение), что нередко наблюдается у данной когорты пациентов .

Патогенетическую основу развития ЦВЗ у больных с диабетом обусловливает генерализованное поражение при СД мелких сосудов (микроангиопатия), сосудов среднего и крупного калибра (макроангиопатия). В результате развивается так называемая диабетическая ангиопатия, наличие и выраженность которой определяют течение и прогноз заболевания. Установлено, что изменения в мелких сосудах (артериолах, капиллярах, венулах) носят специфический для СД характер, а в крупных — расцениваются как ранний и распространенный атеросклероз .

Патогенез микроангиопатии (в том числе vasa nervorum) при диабете связан с образованием аутоантител к гликозилированным белкам сосудистых стенок, накоплением в сосудистой стенке липопротеидов низкой плотности, активизацией процессов перекисного окисления липидов и увеличением образования свободных радикалов, подавлением синтеза простациклина и дефицитом оксида азота, обладающих антиагрегантным и сосудорасширяющим действием.

Развитие дислипидемии на фоне повышения проницаемости сосудистой стенки за счет ее структурных нарушений, связанных с гликозилированием белковых молекул, усилением процессов пероксидации, дефицитом NO и др., приводит к формированию атеросклеротических бляшек, поражающих магистральные сосуды (макроангиопатия). При этом диабетическая макроангиопатия не имеет специфических отличий от атеросклеротических изменений сосудов у людей без СД. Однако установлено, что атеросклероз при СД развивается на 10-15 лет раньше, чем у лиц без него, и затрагивает большинство артерий, что объясняется метаболическими нарушениями, предрасполагающими к сосудистым поражениям . Кроме того, более широкой распространенности атеросклеротического процесса при СД способствует и развитие микроангиопатий.

В свою очередь, прогрессирование микро- и макроангиопатий приводит к снижению эндоневрального кровотока и тканевой гипоксии. Развивающаяся при этом дисгемическая гипоксия переключает энергетический метаболизм нервной ткани на малоэффективный анаэробный гликолиз. В результате в нейронах снижается концентрация фосфокреатина, возрастает содержание лактата (продукт анаэробного окисления глюкозы), развиваются энергетический дефицит и лактоацидоз, что приводит к структурно-функциональным нарушениям в нейронах, клиническим результатом чего является развитие диабетической энцефалопатии. Диабетическая энцефалопатия — стойкая церебральная патология, возникающая под воздействием хронической гипергликемии, метаболических и сосудистых нарушений, клинически проявляется неврологическими синдромами и психопатологическими расстройствами. Установлено, что важную роль в развитии хронических нарушений мозгового кровообращения при СД играют также эндотелиальная дисфункция, нарушение ауторегуляции мозгового кровотока, повышение вязкости и агрегационных свойств крови .

Известно, что адекватное функционирование процессов ауторегуляции мозгового кровотока способно компенсировать гемодинамический дефицит, обусловленный различными причинами, за счет сочетанной работы анатомических и функциональных источников компенсации. По мнению ряда авторов, низкие показатели цереброваскулярной реактивности ассоциируются с повышенным риском развития острых и хронических нарушений мозгового кровообращения . Ауторегуляция церебрального кровообращения обеспечивается комплексом миогенных, метаболических и нейрогенных механизмов. Миогенный механизм связан с реакцией мышечного слоя сосудов на уровень внутрисосудистого давле- ния — так называемый эффект Остроумова — Бейлиса. При этом церебральный кровоток поддерживается на постоянном уровне при условии колебания среднего артериального давления (АД) в диапазоне от 60-70 до 170- 180 мм рт.ст. за счет способности сосудов реагировать: на повышение системного АД — спазмом, на снижение — дилатацией. При снижении АД менее 60 мм рт.ст. или подъеме выше 180 мм рт.ст. появляется зависимость «АД — мозговой кровоток», за которой следует «срыв» ауторегуляции церебрального кровообращения. Метаболический механизм ауторегуляции опо- средован тесной связью кровоснабжения головного мозга с его метаболизмом и функцией. Метаболическими факторами, обусловливающими интенсивность кровоснабжения мозга, являются уровни РаСО2, РаО2 и продуктов метаболизма в артериальной крови и ткани мозга. Снижение нейронального метаболизма приводит к снижению уровня мозгового кровотока. Таким образом, ауторегуляция мозгового кровотока — легкоуязвимый процесс, который может нарушаться при резком повышении или снижении АД, гипоксии, гиперкапнии, прямом токсическом действии экзо- и эндотоксинов на мозговую ткань, в том числе хронической гипергликемии и каскада патологических процессов, которые она инициирует. В этом случае срыв ауторегуляции является составной частью патологического процесса при СД, на основе которого формируются хронические нарушения церебральной гемодинамики и диабетическая энцефалопатия. А оценка состояния цереброваскулярного резерва имеет важное прогностически-диагностическое значение для форм ЦВЗ диабетического генеза .

Целью настоящего исследования явилось определение роли нарушения вазомоторной реактивности сосудов мозга в формировании диабетической энцефалопатии и разработка путей ее коррекции.

Материалы и методы

Было обследовано 67 больных с СД 2-го типа в стадии субкомпенсации и диабетической энцефалопатией в возрасте от 48 до 61 года и длительностью диабета от 4 до 11 лет, находившихся на лечении в неврологическом отделении Научно-практического медицинского центра ХНМУ. У 24 (35,8 %) больных была установлена легкая степень СД, у 32 (47,8 %) — средняя степень тяжести, у 11 (16,4 %) пациентов — тяжелая форма СД. 45,6 % обследованных пациентов в качестве гипогликемической терапии получали инсулинотерапию, 54,4 % больных — таблетированные сахароснижающие препараты.

Состояние церебральной гемодинамики и сосудистой реактивности артерий мозга изучалось по стандартным методикам с использованием датчиков частотой 2, 4, 8 МГц на аппарате «Спектромед-300» (Россия). Алгоритм исследования состояния церебральной гемодинамики и вазомоторной реактивности включал:

Ø исследование магистральных артерий головы и интракраниальных артерий методами экстра- и интракраниальной допплерографии с определением скоростных характеристик кровотока, индексов пульсации и циркуляторного сопротивления;

Ø исследование вазомоторной реактивности по результатам компрессионного теста. Известно, что кратковременная пальцевая компрессия общей сонной артерии (ОСА) на шее приводит к снижению перфузионного давления и развитию преходящего гиперемического ответа после прекращения компрессии, что позволяет рассчитать ряд показателей, характеризующих резервы ауторегуляции. Пациентам (с отсутствием стенозирующего поражения сонных артерий) проводили 5-6-секундную компрессию ОСА с прекращением компрессии в фазу диастолы. Регистрировали среднюю линейную скорость кровотока (ЛСК) в средней мозговой артерии (СМА) до компрессии ипсилатеральной ОСА — V1, во время компрессии — V2, после прекращения компрессии — V3, а также время восстановления исходной ЛСК — T (рис. 1). С помощью полученных данных рассчитывали коэффициент овершута (КО) по формуле: КО = V3/V1 .

Полученные данные были статистически обработаны с использованием пакета прикладных статистических программ Statistica 6.0. Рассчитывались средние значения показателей и ошибки средних. В качестве критерия значимости различия выборок использовались параметрические и непараметрические критерии Стьюдента и Уилкоксона. Различия принимались достоверными при р < 0,05.

Результаты исследования и их обсуждение

В ходе клинико-неврологического обследования больных с СД 2-го типа диабетическая энцефалопатия I степени была диагностирована у 29 пациентов (43,3 %), диабетическая энцефалопатия II степени — у 38 больных (56,7 %). Ведущими неврологическими синдромами у обследованных были: цефалгический синдром (96,5 % случаев); статико-координаторные нарушения (86,1 %); психоэмоциональные расстройства от эмоциональной лабильности до депрессивных синдромов (89,5 %); когнитивная дисфункция (89,5 %); внутричерепная гипертензия (84,2 %), пирамидная недостаточность по центральному типу (49,1 %), полиневропатический синдром (96,5 %), нарушение сна (66,7 %) и др. Цефалгический синдром в большинстве случаев (в 87,7 %) имел сосудистый генез (головные боли носили давящий характер, височную или лобно-височную локализацию, усиливались при смене метеоусловий и психоэмоциональном перенапряжении) или смешанный генез в комбинации с внутричерепной гипертензией (цефалгии распирающего характера с чувством давления изнутри на глазные яблоки и симптомами гиперестезии). Частым неврологическим синдромом при диабетической энцефалопатии были когнитивные нарушения легкой (27-26 баллов по шкале MMSE) и умеренной степени выраженности (25-24 балла по шкале MMSE). Следует отметить, что частота и выраженность объективной симптоматики у обследованных нарастали по мере прогрессирования тяжести диабетической энцефалопатии. Соматическое обследование больных с СД выявило сопутствующую артериальную гипертензию, преимущественно 2-й степени (86 % случаев), длительность которой составляла в среднем 12,3 ± 3,5 года; гиперхолестеринемию (82,5 %); избыточный вес (40,4 %).

Нарушение церебральной гемодинамики у больных с СД 2-го типа по данным допплерографического исследования характеризовалось снижением скорости кровотока в ВСА на 24,5 и 33,9 %, в СМА — на 25,4 и 34,5 %, в ПА — на 24,3 и 44,7 %, в ОА — на 21,7 и 32,6 % (при ДЭ I и II степени соответственно) по отношению к показателям в контрольной группе. Также были выявлены признаки повышения сосудис- того тонуса во всех исследованных сосудах по данным повышения индекса пульсации (Pi) и циркуляторного сопротивления (Ri) в среднем в 1,5 и 1,3 раза при ДЭ I степени и в 1,8 и 1,75 раза при ДЭ II степени. Гемодинамических значимых стенозов магистральных артерий головы у обследованных больных не было выявлено ни в одном случае (их наличие было критерием исключения из исследования в силу опасности проведения компрессионных проб).

Снижение возможностей коллатерального кровотока (анатомического звена церебрального сосудистого резерва) у обследованных пациентов с диабетической энцефалопатией I и II степени подтверждалось депрессией относительно контрольных показателей остаточной скорости кровотока в СМА (V2) в момент компрессии ипсилатеральной ОСА на 19,3 и 28,1 % соответственно. Это отражало нарушение проходимости перфорирующих и соединительных артерий, возможно, в результате их вторичной облитерации как проявление атеросклеротической и диабетической ангиопатии. Снижение коэффициента овершута у больных с диабетической энцефалопатией I и II степени относительно контроля на 11,6 и 16,9 % соответственно свидетельствовало о напряжении функционального звена цереброваскулярной реактивности, в частности, ее миогенного компонента вследствие нарушения при СД структуры сосудистой стенки и ее тонуса. Выявленное увеличение в 1,7 и 2,3 раза времени восстановления скорости кровотока до исходной отражало нарушение мета- болического контура сосудистой реактивности как проявление общих дисметаболических процессов, развивающихся в организме при СД, — нарушения полиолового пути окисления глюкозы, избыточного накопления сорбитола и про- оксидантов, развития гиперлипидемии, дефицита депрессорных факторов, необратимого гликозилирования белков, в том числе белков стенок сосудов .

Следует отметить, что выявленное ухудшение гемодинамических показателей и показателей цереброваскулярной реактивности у больных с СД 2-го типа находилось в прямо пропорциональной зависимости от степени тяжести диабетической энцефалопатии, что свидетельствовало о патогенетической роли нарушения ауторегуляции мозгового кровотока в развитии мозговых дисциркуляций и формировании энцефалопатического синдрома при СД 2-го типа.

Таким образом, нарушение церебральной гемодинамики и снижение реактивности сосудов головного мозга у пациентов с СД 2-го типа являются патогенетической основой формирования диабетической энцефалопатии. Учитывая тесную связь гемодинамических и обменных нарушений при СД, а также их комплексную роль в патогенезе развития цереброваскулярных и неврологических осложнений сахарного диабета, в схемы терапии диабетической энцефалопатии необходимо включать препараты комплексного действия, способные улучшить состояние цереброваскулярной реактивности, уменьшить явления вазоспазма в церебральных сосудах и нормализовать метаболические процессы в организме, что позволит улучшить состояние пациентов с СД и качество их жизни.


Список литературы

Список литературы находится в редакции

Регуляция мозгового кровообращения осуществляется сложной системой, включающей интра- и экстрацеребральные механизмы. Эта система способна к саморегуляции (т.е. может поддерживать кровоснабжение головного мозга в соответствии с его функциональной и метаболической потребностью и тем самым сохранять постоянство внутренней среды), что осуществляется путем изменения просвета мозговых артерий. Эти гомеостатические механизмы, развившиеся в процессе эволюции, весьма совершенны и надежны. Среди них выделяют следующие основные механизмы саморегуляции.

Нервный механизм передает информацию о состоянии объекта регулирования посредством специализированных рецепторов, расположенных в стенках сосудов и в тканях. К ним, в частности, относятся механорецепторы, локализующиеся в кровеносной системе, сообщающие об изменениях внутрисосудистого давления (баро- и прессорецепторы), в том числе прессорецепторы каротидного синуса, при их раздражении расширяются мозговые сосуды; механорецепторы вен и мозговых оболочек, которые сигнализируют о степени их растяжения при увеличении кровенаполнения или объема мозга; хеморецепторы каротидного синуса (при их раздражении суживаются мозговые сосуды) и самой ткани мозга, откуда идет информация о содержании кислорода, углекислоты, о колебаниях рН и о других химических сдвигах в среде при накоплении продуктов метаболизма или биологически активных веществ, а также рецепторы вестибулярного аппарата, аортальной рефлексогенной зоны, рефлексогенные зоны сердца и коронарных сосудов, ряд проприорецепторов. Особенно велика роль синокаротидной зоны. Она оказывает влияние на мозговое кровообращение не только опосредовано (через общее АД), как это представлялось ранее, но и непосредственно. Денервация и новокаинизация этой зоны в эксперименте, устраняя сосудосуживающие влияния, ведет к расширению мозговых сосудов, к усилению кровоснабжения головного мозга, к повышению в нем напряжения кислорода.

Гуморальный механизм заключается в прямом воздействии на стенки сосудов-эффекторов гуморальных факторов (кислорода, углекислоты, кислых продуктов метаболизма, ионов К и др.) путем диффузии физиологически активных веществ в стенку сосудов. Так, мозговое кровообращение усиливается при уменьшении содержания кислорода и (или) увеличении содержания углекислого газа в крови и, наоборот, ослабляется, когда содержание газов в крови меняется в противоположном направлении. При этом происходит рефлекторная дилятация или констрикция сосудов в результате раздражения хеморецепторов соответствующих артерий мозга при изменении содержания в крови кислорода и углекислоты. Возможен и механизм аксонрефлекса.


Миогенный механизм реализуется на уровне сосудов-эффекторов. При их растяжении тонус гладких мышц возрастает, а при сокращении наоборот снижается. Миогенные реакции могут способствовать изменениям сосудистого тонуса в определенном направлении.

Разные механизмы регуляции действуют не изолировано, а в различных сочетаниях друг с другом. Система регулирования поддерживает постоянный кровоток в мозге на достаточном уровне и быстро изменяет его при воздействии различных «возмущающих» факторов.

Таким образом, понятие «сосудистые механизмы» включает структурные и функциональные особенности соответствующих артерий или их сегментов (локализацию в микроциркуляторной системе, калибр, строение стенок, реакции на различные воздействия), а также их функциональное поведение – специфическое участие в тех либо иных видах регуляции периферического кровообращения и микроциркуляции.

Выяснение структурно-функциональной организации сосудистой системы головного мозга позволило сформулировать концепцию о внутренних (автономных) механизмах регуляции мозгового кровообращения при различных возмущающих воздействиях. Согласно этой концепции, в частности, были выделены: «замыкательный механизм» магистральных артерий, механизм пиальных артерий, механизм регуляции оттока крови из венозных синусов мозга, механизм внутримозговых артерий. Суть их функционирования заключается в следующем.

«Замыкательный» механизм магистральных артерий поддерживает в мозге постоянство кровотока при изменениях уровня общего артериального давления. Это осуществляется путем активных изменений просвета мозговых сосудов – их сужения, увеличивающего сопротивление кровотоку при повышении общего АД и, наоборот, расширения, снижающего цереброваскулярное сопротивление при падении общего АД. Как констрикторные, так и дилятаторные реакции возникают рефлекторно с экстракраниальных прессорецепторов, либо с рецепторов самого мозга. Основными эффекторами в таких случаях являются внутренние сонные и позвоночные артерии. Благодаря активным изменениям тонуса магистральных артерий гасятся дыхательные колебания общего артериального давления, а также волны Траубе – Геринга, и тогда кровоток в сосудах мозга остается равномерным. Если же изменения общего АД очень значительны или механизм магистральных артерий несовершенен, вследствие чего нарушается адекватное кровоснабжение головного мозга, то наступает второй этап саморегуляции – включается механизм пиальных артерий, реагирующий аналогично механизму магистральных артерий. Весь этот процесс многозвеньевой. Основную роль в нем играет нейрогенный механизм, однако определенное значение имеют и особенности функционирования гладкомышечной оболочки артерии (миогенный механизм), а также чувствительность последней к различным биологически активным веществам (гуморальный механизм).

При венозном застое, обусловленном окклюзией крупных шейных вен, избыточное кровенаполнение сосудов головного мозга устраняется путем ослабления притока крови в его сосудистую систему вследствие констрикции всей системы магистральных артерий. В таких случаях регуляция происходит также рефлекторно. Рефлексы посылаются с механорецепторов венозной системы, мелких артерий и оболочек мозга (вено-вазальный рефлекс).

Система внутримозговых артерий представляет собой рефлексогенную зону, которая в условиях патологии дублирует роль синокаротидной рефлексогенной зоны.

Таким образом, согласно разработанной концепции, существуют механизмы, ограничивающие влияние общего АД на мозговой кровоток, корреляция между которыми во многом зависит от вмешательства саморегулирующихся механизмов, поддерживающих постоянство сопротивления мозговых сосудов (табл. 1). Однако саморегуляция возможна лишь в определенных пределах, ограниченных критическими величинами факторов, являющихся ее пусковыми механизмами (уровень системного АД, напряжения кислорода, углекислоты, а также рH вещества мозга и др.). В клинических условиях важно определить роль исходного уровня АД, его диапазона, в рамках которого мозговой кровоток сохраняет стабильность. Отношение диапазона этих изменений к исходному уровню давления (показатель саморегуляции мозгового кровотока) в известной мере определяет потенциальные возможности саморегуляции (высокий или низкий уровень саморгеуляции).

Нарушения саморегуляции мозгового кровообращения возникают в следующих случаях.

1. При резком снижении общего АД, когда градиент давления в кровеносной системе мозга уменьшается настолько, что не может обеспечить достаточный кровоток в мозге (при уровне систолического давления ниже 80 мм рт. ст.). Минимальный критический уровень системного АД равен 60 мм рт. ст. (при исходном – 120 мм рт. ст.). При его падении мозговой кровоток пассивно следует за изменением общего АД.

2. При остром значительном подъеме системного давления (выше 180 мм рт. ст.), когда нарушается миогенная регуляция, так как мышечный аппарат артерий мозга утрачивает способность противостоять повышению внутрисосудистого давления, в результате чего расширяются артерии, усиливается мозговой кровоток, что чревато «мобилизацией» тромбов и эмболией. Впоследствии изменяются стенки сосудов, а это ведет к отеку мозга и резкому ослаблению мозгового кровотока, несмотря на то, что системное давление продолжает оставаться на высоком уровне.

3. При недостаточном метаболическом контроле мозгового кровотока. Так, иногда после восстановления кровотока в ишемизированном участке мозга концентрация углекислоты снижается, но рН сохраняется на низком уровне вследствие метаболического ацидоза. В результате сосуды остаются расширенными, а мозговой кровоток – высоким; кислород утилизируется не в полной мере и оттекающая венозная кровь имеет красный цвет (синдром избыточной перфузии).

4. При значительном снижении интенсивности насыщения крови кислородом или увеличении напряжения углекислоты в мозге. При этом активность мозгового кровотока также меняется вслед за изменением системного АД.

При срывах механизмов саморегуляции артерии мозга утрачивают способность к сужению в ответ на повышение внутрисосудистого давления, пассивно расширяются, вследствие чего избыточное количество крови под высоким давлением направляется в мелкие артерии, капилляры, вены. В результате повышается проницаемость стенок сосудов, начинается выход белков, развивается гипоксия, возникает отек мозга.

Таким образом, нарушения мозгового кровообращения компенсируются до определенных пределов за счет местных регуляторных механизмов. Впоследствии в процесс вовлекается и общая гемодинамика. Однако даже при терминальных состояниях в течение нескольких минут за счет автономности мозгового кровообращения в мозге поддерживается кровоток, а напряжение кислорода падает медленнее, чем в других органах, так как нервные клетки способны поглощать кислород при таком низком парциальном давлении его в крови, при котором другие органы и ткани поглощать его не могут. По мере развития и углубления процесса все более нарушаются взаимоотношения между мозговым кровотоком и системной циркуляцией, иссякает резерв ауторегулирующих механизмов, и кровоток в мозге все больше начинает зависеть от уровня общего АД.

Таким образом, компенсация нарушений мозгового кровообращения осуществляется при помощи тех же, функционирующих в нормальных условиях, регуляторных механизмов, но более напряженных.

Для механизмов компенсации характерна двойственность: компенсация одних нарушений вызывает другие циркуляторные расстройства, например, при восстановлении кровотока в ткани, испытавшей дефицит кровоснабжения, в ней может развиться постишемическая гиперемия в виде избыточной перфузии, способствующей развитию постишемического отека мозга.

Конечной функциональной задачей системы мозгового кровообращения являются адекватное метаболическое обеспечение деятельности клеточных элементов мозга и своевременное удаление продуктов их обмена, т.е. процессы, протекающие в пространстве микрососуд – клетка. Все реакции мозговых сосудов подчинены этим главным задачам. Микроциркуляция в головном мозге имеет важную особенность: в соответствии со спецификой его функционирования активность отдельных областей ткани меняется почти независимо от других областей ее, поэтому микроциркуляция также меняется мозаично – в зависимости от характера функционирования мозга в тот или иной момент. Благодаря ауторегуляции перфузионное давление микроциркуляторных систем любых частей мозга менее зависит от центрального кровообращения в других органах. В мозге микроциркуляция усиливается при повышении уровня метаболизма и, наоборот. Те же механизмы функционируют и в условиях патологии, когда имеет место неадекватность кровоснабжения ткани. При физиологических и патологических условиях интенсивность кровотока в микроциркуляторной системе зависит от величины просвета сосудов и от реологических свойств крови. Однако регулирование микроциркуляции осуществляется в основном путем активных изменений ширины сосудов, в то же время при патологии важную роль играют также изменения текучести крови в микрососудах.

Понравилась статья? Поделитесь с друзьями!