Химическая реакция разложения. Что такое реакция разложения в химии? Примеры реакции разложения

В современной науке различают химические и ядерные реакции, протекающие в результате взаимодействия исходных веществ, которые принято называть реагентами. В результате образуются другие химические вещества, которые называются продуктами. Все взаимодействия происходят при определенных условиях (температура, излучение, присутствие катализаторов и прочее). Ядра атомов реагентов химических реакций не меняются. В ядерных превращениях образуются новые ядра и частицы. Существует несколько различных признаков, по которым определяют типы химических реакций.

За основу классификации можно взять число исходных и образующихся веществ. В этом случае все типы химических реакций делятся на пять групп:

  1. Разложения (несколько новых получается из одного вещества), например, разложение при нагревании на хлористый калий и кислород: KCLO3 → 2KCL + 3O2.
  2. Соединения (два или несколько соединений образуют одно новое), взаимодействуя с водой, окись кальция превращается в гидроокись кальция: H2O + CaO → Ca(OH)2;
  3. Замещения (число продуктов равно числу исходных веществ, в которых замещена одна составляющая часть на другую), железо в сульфате меди, замещая медь, образует сульфат двухвалентного железа: Fe + CuSO4 → FeSO4 +Cu.
  4. Двойного обмена (молекулы двух веществ обмениваются оставляющими их частями), металлы в и обмениваются анионами, образуя выпадающий в осадок йодид серебра и азотнокислый кадий: KI + AgNO3 → AgI↓ + KNO3.
  5. Полиморфного превращения (происходит переход вещества из одной кристаллической формы в другую), йодид цвета при нагревании переходит в йодид ртути желтого цвета: HgI2 (красный) ↔ HgI2 (желтый).

Если химические превращения рассматривать по признаку изменения в реагирующих веществах степени окисления элементов, то тогда типы химических реакций могут делиться на группы:

  1. С изменением степени окисления — реакции окислительно-восстановительные (ОВР). В качестве примера можно рассмотреть взаимодействие железа с соляной кислотой: Fe + HCL → FeCl2 + H2, в результате степень окисления железа (восстановитель, отдающий электроны) изменилась с 0 до -2, а водорода (окислитель, принимающий электроны) с +1 до 0.
  2. Без изменения степени окисления (т. е. не ОВР). Например, реакции кислотно-щелочного взаимодействия бромистого водорода с гидроокисью натрия: HBr + NaOH → NaBr + H2O, в результате таких реакций образуются соль и вода, а степени окисления химических элементов, входящих в исходные вещества, не меняются.

Если рассматривать и скорость протекания в прямом и обратном направлении, то все типы химических реакций могут делиться также на две группы:

  1. Обратимые — те, что одновременно протекают в двух направлениях. Большинство реакций являются обратимыми. В качестве примера можно привести растворение в воде двуокиси углерода с образованием нестойкой угольной кислоты, которая разлагается на исходные вещества: H2O + CO2 ↔ H2CO3.
  2. Необратимые - протекают только в прямом направлении, после полного расходования одного из исходных веществ завершаются, после чего присутствуют только продукты и исходное вещество, взятое в избытке. Обычно один из продуктов является или выпавшим в осадок нерастворимым веществом или выделившимся газом. Например, при взаимодействии серной кислоты и хлористого бария: H2SO4 + BaCl2 + → BaSO4↓ + 2HCl в осадок выпадает нерастворимый

Типы химических реакций в органической химии можно разделить на четыре группы:

  1. Замещение (происходит замена одних атомов или групп атомов на другие), например, при взаимодействии хлорэтана с гидроокисью натрия образуется этанол и хлорид натрия: C2H5Cl + NaOH → C2H5OH + NaCl, то есть атом хлора замещается на атом водорода.
  2. Присоединение (две молекулы реагируют и образовывают одну), например, бром присоединяется в месте разрыва двойной связи в молекуле этилена: Br2 + CH2=CH2 → BrCH2—CH2Br.
  3. Отщепление (молекула разлагается на две и более молекулы), например, при определенных условиях этанол разлагается на этилен и воду: C2H5OH → CH2=CH2 + H2O.
  4. Перегруппировка (изомеризация, когда одна молекула превращается в другую, но качественный и количественный состав атомов в ней не меняется), например, 3-хлорутен-1 (C4H7CL) превращается в 1 хлорбутен-2 (C4H7CL). Здесь атом хлора перешел от третьего углеродного атома в углеводородной цепочке к первому, а двойная связь соединяла первый и второй атомы углерода, а затем стала соединять второй и третьи атомы.

Известны и другие виды химических реакций:

  1. По протекающие с поглощением (эндотермические) или выделением тепла (экзотермические).
  2. По типу взаимодействующих реагентов или образующихся продуктов. Взаимодействие с водой — гидролиз, с водородом — гидрирование, с кислородом — окисление или горение. Отщепление воды — дегидратация, водорода — дегидрирование и так далее.
  3. По условиям взаимодействия: в присутствии под действием низкой или высокой температуры, при изменении давления, на свету и прочее.
  4. По механизму протекания реакции: ионные, радикально-цепные или цепные реакции.

Реакции разложения играют большую роль в жизни планеты. Ведь именно они способствуют уничтожению отходов жизнедеятельности всех биологических организмов. Кроме того, этот процесс ежедневно помогает человеческому телу усваивать различные сложные соединения путем расщепления их на простые (катаболизм). Помимо всего перечисленного, данная реакция способствует образованию простых органических и неорганических веществ из сложных. Давайте узнаем больше об этом процессе, а также рассмотрим практические примеры химической реакции разложения.

Что называется реакциями в химии, какие виды их бывают и от чего они зависят

Прежде чем изучить информацию о разложении, стоит узнать о в целом. Под этим названием подразумевается способность молекул одних веществ взаимодействовать с другими и образовывать таким способом новые соединения.

К примеру, если между собою провзаимодействуют кислород и две в результате получится две молекулы оксида гидрогена, который мы все знаем под названием вода. Данный процесс можно записать с помощью такого химического уравнения: 2Н 2 + О 2 → 2Н 2 О.

Хотя существуют разные критерии, по которым различают химические реакции (тепловой эффект, катализаторы, наличие/отсутствие границ раздела фаз, изменение степеней окисления реагентов, обратимость/необратимость), чаще всего их классифицируют по типу превращения взаимодействующих веществ.

Таким образом, выделяется четыре вида химических процессов.

  • Соединение.
  • Разложение.
  • Обмен.
  • Замещение.

Все вышеперечисленные реакции графически записываются с помощью уравнений. Общая их схема выглядит таким образом: А → Б.

В левой части этой формулы находятся исходные реагенты, а в правой - вещества, образующиеся вследствие реакции. Как правило, для ее начала необходимо воздействие температурой, электричеством или использование катализирующих добавок. Их наличие также должно указываться в химическом уравнении.

разложения (расщепления)

Для этого вида химического процесса характерно образование двух и больше новых соединений из молекул одного вещества.

Говоря более простым языком, реакцию разложения можно сравнить с домиком из конструктора. Решив построить машинку и кораблик, ребенок разбирает начальное строение и из его деталей сооружает желаемое. При этом структура самих элементов конструктора не меняется, так же как это происходит с атомами вещества, участвующего в расщеплении.

Как выглядит уравнение рассматриваемой реакции

Несмотря на то, что на разъединение на более простые составляющие способны сотни соединений, все подобные процессы происходят по одному принципу. Изобразить его можно с помощью схематической формулы: АБВ → А+Б+В.

В ней АБВ - это начальное соединение, подвергшееся расщеплению. А, Б и В - это вещества, образованные из атомов АБВ в процессе реакции разложения.

Виды реакций расщепления

Как уже было сказано выше, чтобы начать какой-то химический процесс, часто необходимо оказать определенное воздействие на реагенты. В зависимости от типа подобной стимуляции, выделяют несколько видов разложения:


Реакция разложения перманганата калия (KMnO4)

Разобравшись с теорией, стоит рассмотреть практические примеры процесса расщепления веществ.

Первым из них станет распад KMnO 4 (в простонародье именуется марганцовкой) вследствие нагревания. Уравнение реакции выглядит таким образом: 2KMnO 4 (t 200°С) → K 2 MnO 4 + MnO 2 + O 2 .

Из представленной химической формулы видно, что для активации процесса необходимо нагреть исходный реагент до 200 градусов по Цельсию. Для лучшего протекания реакции марганцовку помещают в вакуумный сосуд. Из этого можно сделать вывод, что данный процесс является пиролизом.

В лабораториях и на производстве он проводится для получения чистого и контролируемого кислорода.

Термолиз хлората калия (KClO3)

Реакция разложения бертолетовой соли - это еще один пример классического термолиза в чистом виде.

Проходит упоминаемый процесс в два этапа и выглядит таким образом:

  • 2 KClO 3 (t 400 °С) → 3KClO 4 + KCl.
  • KClO 4 (t от 550 °С) → KCl + 2О2

Также термолиз хлората калия можно провести и при более низких температурах (до 200 °С) в один этап, но для этого нужно, чтобы в реакции приняли участие катализирующие вещества - оксиды различных металлов (купрум, ферум, манган и т. п.).

Уравнение такого рода будет выглядеть таким образом: 2KClO 3 (t 150 °С, MnO 2) → KCl + 2О 2 .

Как и перманганат калия, бертолетова соль используется в лабораториях и промышленности для получения чистого кислорода.

Электролиз и радиолиз воды (Н20)

Еще одним интересным практическим примером рассматриваемой реакции будет разложение воды. Его можно произвести двумя способами:

  • Под воздействием на оксид гидрогена электрического тока: Н 2 О → Н 2 + О 2 . Рассматриваемый способ получения кислорода используют подводники на своих субмаринах. Также в будущем его планируют употреблять для получения водорода в больших количествах. Главным препятствием для этого сегодня являются огромные энергетические затраты, необходимые для стимуляции реакции. Когда будет найден способ их минимизировать, электролиз воды станет основным способом производства не только водорода, но и кислорода.
  • Расщепить воду можно и при воздействии на нее альфа-излучением: Н 2 О → Н 2 О + +е - . В результате этого молекула оксида гидрогена теряет один электрон, ионизируясь. В таком виде Н2О + снова вступает в реакцию с другими нейтральными молекулами воды, образуя высокореактивный гидроксид-радикал: Н2О+ Н2О + → Н2О + ОН. Потерянный электрон, в свою очередь, также параллельно реагирует с нейтральными молекулами оксида гидрогена, способствуя их распаду на радикалы Н и ОН: Н 2 О + е - → Н + ОН.

Расщепление алканов: метан

Рассматривая различные способы разъединения сложных веществ, стоит уделить особое внимание реакции разложения алканов.

Под этим названием скрываются предельные углеводороды с общей формулой С Х Н 2Х+2. В молекулах рассматриваемых веществ все атомы карбона соединены одинарными связями.

Представители этого ряда встречаются в природе во всех трех агрегатных состояниях (газ, жидкость, твердое тело).

Все алканы (реакция разложения представителей этого ряда - ниже) легче воды и не растворяются в ней. При этом они сами являются отличными растворителями для других соединений.

Среди основных химических свойств таких веществ (горение, замещение, галогенирование, дегидрирование) - и способность расщепляться. Однако данный процесс может происходить как полностью, так и частично.

Вышеупомянутое свойство можно рассмотреть на примере реакции разложения метана (первый член алканового ряда). Этот термолиз происходит при 1000 °С: СН 4 → С+2Н 2 .

Однако если проводить реакцию разложения метана при более высокой температуре (1500 °С), а потом резко снизить ее, этот газ расщепится не полностью, образуя этилен и водород: 2СН 4 → C 2 H 4 + 3H 2 .

Разложение этана

Второй член рассматриваемого алканового ряда - это С 2 Н 4 (этан). Реакция разложения его происходит также под воздействием высокой температуры (50 °С) и при полном отсутствии кислорода или других окислителей. Выглядит она следующим образом: C 2 H 6 → C 2 H 4 + H 2 .

Представленное выше уравнение реакции разложения этана до водорода и этилена нельзя считать пиролизом в чистом виде. Дело в том, что данный процесс происходит с присутствием катализатора (например, металла никеля Ni или водяного пара), а это противоречит определению пиролиза. Поэтому о представленном выше примере расщепления корректно говорить как о процессе разложения, происходящем при пиролизе.

Стоит отметить, что рассмотренная реакция в промышленности широко используется для получения самого производимого органического соединение в мире - газа этилена. Однако из-за взрывоопасности C 2 H 6 чаще этот простейший алкен синтезируют из других веществ.

Рассмотрев определения, уравнение, виды и различные примеры реакции разложения, можно сделать вывод, что она играет очень большую роль не только для человеческого организма и природы, но и для промышленности. Также с ее помощью в лабораториях удается синтезировать многие полезные вещества, что помогает ученым проводить важных

Часть I

1. Реакции соединения – это «химический антоним» реакции разложения.

2. Запишите признаки реакции соединения:
- в реакции участвуют 2 простых или сложных вещества;
- образуется одно сложное;
- выделяется тепло.

3. На основании выделенных признаков дайте определение реакций соединения.
Реакции соединения – это реакции, в результате которых образуется из одного или нескольких простых или сложных веществ одно сложное.

По направлению протекания реакции делят на:


Часть II

1. Запишите уравнения химических реакций:


2. Напишите уравнения химических реакций между хлором:
1) и натрием 2Na+Cl2=2NaCl
2) и кальцием Ca+Cl2=CaCl2
3) и железом с образованием хлорида железа (III) 2Fe+3Cl2=2FeCl3

3. Дайте характеристику реакции


4. Дайте характеристику реакции


5. Запишите уравнения реакций соединения, протекающих согласно схемам:


6. Расставьте коэффициенты в уравнениях реакций, схемы которых:


7. Верны ли следующие суждения?
А. Большинство реакций соединения являются экзотермическими.
Б. При повышении температуры скорость химической реакции увеличивается.
1) оба суждения верны

8. Рассчитайте объём водорода и массу серы, которые необходимы для образования 85 г сероводорода.

7.1. Основные типы химических реакций

Превращения веществ, сопровождающиеся изменением их состава и свойств, называются химическими реакциями или химическими взаимодействиями. При химических реакциях не происходит изменения состава ядер атомов.

Явления, при которых изменяется форма или физическое состояние веществ или изменяется состав ядер атомов, называются физическими. Примером физических явлений является термическая обработка металлов, при которой происходит изменение их формы (ковка), плавление металла, возгонка иода, превращение воды в лед или пар и т.д., а также ядерные реакции, в результате которых из атомов одних элементов образуются атомы других элементов.

Химические явления могут сопровождаются физическими превращениями. Например, в результате протекания химических реакций в гальваническом элементе возникает электрический ток.

Химические реакции классифицируют по различным признакам.

1. По знаку теплового эффекта все реакции делятся на эндотермические (протекающие с поглощением теплоты) и экзотермические (протекающие с выделением теплоты) (см. § 6.1).

2. По агрегатному состоянию исходных веществ и продуктов реакции различают:

    гомогенные реакции , в которых все вещества находятся в одной фазе:

    2 KOH (p-p) + H 2 SO 4(p-p) = K 2 SO (p-p) + 2 H 2 O (ж) ,

    CO (г) + Cl 2(г) = COCl 2(г) ,

    SiO 2(к) + 2 Mg (к) = Si (к) + 2 MgO (к) .

    гетерогенные реакции , вещества в которых находятся в различных фазах:

СаО (к) + СО 2(г) = СаCO 3(к) ,

CuSO 4(р-р) + 2 NaOH (р-р) = Cu(OH) 2(к) + Na 2 SO 4(р-р) ,

Na 2 SO 3(р-р) + 2HCl (р-р) = 2 NaCl (р-р) + SO 2(г) + H 2 O (ж) .

3. По способности протекать только в прямом направлении, а также в прямом и обратном направлении различают необратимые и обратимые химические реакции (см. § 6.5).

4. По наличию или отсутствую катализаторов различают каталитические и некаталитические реакции (см. § 6.5).

5. По механизму протекания химические реакции делятся на ионные , радикальные и др. (механизм химических реакций, протекающих с участием органических соединений, рассматривается в курсе органической химии).

6. По состоянию степеней окисления атомов, входящих в состав реагирующих веществ различают реакции, протекающие без изменения степени окисления атомов, и с изменением степени окисления атомов (окислительно–восстановительные реакции ) (см. § 7.2) .

7. По изменению состава исходных веществ и продуктов реакции различают реакции соединения, разложения, замещения и обмена . Эти реакции могут протекать как с изменением, так и без изменения степеней окисления элементов, табл . 7.1.

Таблица 7.1

Типы химических реакций

Общая схема

Примеры реакций, протекающих без изменения степени окисления элементов

Примеры окислительно-восстановительных реакций

Соединения

(из двух или нескольких веществ образуется одно новое вещество)

HCl + NH 3 = NH 4 Cl;

SO 3 + H 2 O = H 2 SO 4

H 2 + Cl 2 = 2HCl;

2Fe + 3Cl 2 = 2FeCl 3

Разложения

(из одного вещества образуется несколько новых веществ)

А = В + С + D

MgCO 3 MgO + CO 2 ;

H 2 SiO 3 SiO 2 + H 2 O

2AgNO 3 2Ag + 2NO 2 + O 2

Замещения

(при взаимодействии веществ атомы одного вещества замещают в молекуле атомы другого вещества)

А + ВС = АВ + С

CaCO 3 + SiO 2 CaSiO 3 + CO 2

Pb(NO 3) 2 + Zn =
Zn(NO 3) 2 + Pb;

Mg + 2HCl = MgCl 2 + H 2

(два вещества обмениваются своими составными частями, образуя два новых вещества)

АВ + СD = AD + CВ

AlCl 3 + 3NaOH =
Al(OH) 3 + 3NaCl;

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

7.2. Окислительно–восстановительные реакции

Как указывалось выше, все химические реакции подразделяются на две группы:

Химические реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно–восстановительными.

Окисление – это процесс отдачи электронов атомом, молекулой или ионом:

Na o – 1e = Na + ;

Fe 2+ – e = Fe 3+ ;

H 2 o – 2e = 2H + ;

2 Br – – 2e = Br 2 o .

Восстановление – это процесс присоединения электронов атомом, молекулой или ионом:

S o + 2e = S 2– ;

Cr 3+ + e = Cr 2+ ;

Cl 2 o + 2e = 2Cl – ;

Mn 7+ + 5e =Mn 2+ .

Атомы, молекулы или ионы, принимающие электроны, называются окислителями . Восстановителями являются атомы, молекулы или ионы, отдающие электроны.

Принимая электроны окислитель в процессе протекания реакции восстанавливается, а восстановитель – окисляется. Окисление всегда сопровождается восстановлением и наоборот. Таким образом, число электронов, отдаваемых восстановителем, всегда равно числу электронов, принимаемых окислителем .

7.2.1. Степень окисления

Степень окисления – это условный (формальный) заряд атома в соединении, рассчитанный в предположении, что оно состоит только из ионов. Степень окисления принято обозначать арабской цифрой сверху символа элемента со знаком “+” или “–” . Например, Al 3+ , S 2– .

Для нахождения степеней окисления руководствуются следующими правилами:

    степень окисления атомов в простых веществах равна нулю;

    алгебраическая сумма степеней окисления атомов в молекуле равна нулю, в сложном ионе – заряду иона;

    степень окисления атомов щелочных металлов всегда равна +1;

    атом водорода в соединениях с неметаллами (CH 4 , NH 3 и т.д) проявляет степень окисления +1, а с активными металлами его степень окисления равна –1 (NaH, CaH 2 и др.);

    атом фтора в соединениях всегда проявляет степень окисления –1;

    степень окисления атома кислорода в соединениях обычно равна –2, кроме пероксидов (H 2 O 2 , Na 2 O 2), в которых степень окисления кислорода –1, и некоторых других веществ (надпероксидов, озонидов, фторидов кислорода).

Максимальная положительная степень окисления элементов в группе обычно равна номеру группы. Исключением являются фтор, кислород, поскольку их высшая степень окисления ниже номера группы, в которой они находятся. Элементы подгруппы меди образуют соединения, в которых их степень окисления превышает номер группы (CuO, AgF 5 , AuCl 3).

Максимальная отрицательная степень окисления элементов, находящихся в главных подгруппах периодической системы может быть определена вычитанием из восьми номера группы. Для углерода это 8 – 4 = 4, для фосфора – 8 – 5 = 3.

В главных подгруппах при переходе от элементов сверху вниз устойчивость высшей положительной степени окисления уменьшается, в побочных подгруппах, наоборот, сверху вниз увеличивается устойчивость более высоких степеней окисления.

Условность понятия степени окисления можно продемонстрировать на примере некоторых неорганических и органических соединений. В частности, в фосфиновой (фосфорноватистой) Н 3 РО 2 , фосфоновой (фосфористой) Н 3 РО 3 и фосфорной Н 3 РО 4 кислотах степени окисления фосфора соответственно равны +1, +3 и +5, в то время как во всех этих соединениях фосфор пятивалентен. Для углерода в метане СН 4 , метаноле СН 3 ОН, формальдегиде СН 2 O , муравьиной кислоте НСООН и оксиде углерода (IV) СO 2 степени окисления углерода составляют соответственно –4, –2, 0, +2 и +4, в то время как валентность атома углерода во всех этих соединениях равна четырем.

Несмотря на то, что степень окисления является условным понятием, она широко используется при составлении окислительно–восстановительных реакций.

7.2.2. Важнейшие окислители и восстановители

Типичными окислителями являются:

1. Простые вещества, атомы которых обладают большой электроотрицательностью. Это, в первую очередь, элементы главных подгрупп VI и VII групп периодической системы: кислород, галогены. Из простых веществ самый сильный окислитель – фтор.

2. Соединения, содержащие некоторые катионы металлов в высоких степенях окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

3. Соединения, содержащие некоторые сложные анионы, элементы в которых находятся в высоких положительных степенях окисления: 2– , – – и др.

К восстановителям относят:

1. Простые вещества, атомы которых обладают низкой электроотрицательностью – активные металлы. Восстановительные свойства могут проявлять и неметаллы, например, водород и углерод.

2. Некоторые соединения металлов, содержащие катионы (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления.

3. Некоторые соединения, содержащие такие простые ионы как, например I – , S 2– .

4. Соединения, содержащие сложные ионы (S 4+ O 3) 2– , (НР 3+ O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

В лабораторной практике наиболее часто используются следующие окислители:

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

7.2.3. Классификация окислительно–восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на три типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования (самоокисления-самовосстановления).

Межмолекулярные реакции протекают с изменением степени окисления атомов, которые находятся в различных молекулах. Например:

2 Al + Fe 2 O 3 Al 2 O 3 + 2 Fe,

C + 4 HNO 3(конц) = CO 2 + 4 NO 2 + 2 H 2 O.

К внутримолекулярным реакциям относятся такие реакции, в которых окислитель и восстановитель входят в состав одной и той же молекулы, например:

(NH 4) 2 Cr 2 O 7 N 2 + Cr 2 O 3 + 4 H 2 O,

2 KNO 3 2 KNO 2 + O 2 .

В реакциях диспропорционирования (самоокисления-самовосстановления) атом (ион) одного и того же элемента является и окислителем, и восстановителем:

Cl 2 + 2 KOH KCl + KClO + H 2 O,

2 NO 2 + 2 NaOH = NaNO 2 + NaNO 3 + H 2 O.

7.2.4. Основные правила составления окислительно-восстановительных реакций

Составление окислительно-восстановительных реакций осуществляют согласно этапам, представленным в табл. 7.2.

Таблица 7.2

Этапы составления уравнений окислительно-восстановительных реакций

Действие

Определить окислитель и восстановитель.

Установить продукты окислительно-восстановительной реакции.

Составить баланс электронов и с его помощью расставить коэффициенты у веществ, изменяющих свои степени окисления.

Расставить коэффициенты у других веществ, принимающих участие и образующихся в окислительно-восстановительной реакции.

Проверить правильность расстановки коэффициентов путем подсчета количества вещества атомов (как правило, водорода и кислорода), находящихся в левой и правой частях уравнения реакции.

Правила составления окислительно-восстановительных реакций рассмотрим на примере взаимодействия сульфита калия с перманганатом калия в кислой среде:

1. Определение окислителя и восстановителя

Находящийся в высшей степени окисления марганец не может отдавать электроны. Mn 7+ будет принимать электроны, т.е. является окислителем.

Ион S 4+ может отдать два электрона и перейти в S 6+ , т.е. является восстановителем. Таким образом, в рассматриваемой реакции K 2 SO 3 – восстановитель, а KMnO 4 – окислитель.

2. Установление продуктов реакции

K 2 SO 3 + KMnO 4 + H 2 SO 4 ?

Отдавая два электрона электрон, S 4+ переходит в S 6+ . Сульфит калия (K 2 SO 3), таким образом, переходит в сульфат (K 2 SO 4). В кислой среде Mn 7+ принимает 5 электронов и в растворе серной кислоты (среда) образует сульфат марганца (MnSO 4). В результате данной реакции образуются также дополнительные молекулы сульфата калия (за счет ионов калия, входящих в состав перманганата), а также молекулы воды. Таким образом рассматриваемая реакция запишется в виде:

K 2 SO 3 + KMnO 4 + H 2 SO 4 = K 2 SO 4 + MnSO 4 + H 2 O.

3. Составление баланса электронов

Для составления баланса электронов необходимо указать те степени окисления, которые изменяются в рассматриваемой реакции:

K 2 S 4+ O 3 + KMn 7+ O 4 + H 2 SO 4 = K 2 S 6+ O 4 + Mn 2+ SO 4 + H 2 O.

Mn 7+ + 5 е = Mn 2+ ;

S 4+ – 2 е = S 6+ .

Число электронов, отдаваемых восстановителем должно равняться числу электронов, принимаемых окислителем. Поэтому в реакции должно участвовать два Mn 7+ и пять S 4+ :

Mn 7+ + 5 е = Mn 2+ 2,

S 4+ – 2 е = S 6+ 5.

Таким образом, число электронов, отдаваемых восстановителем (10) будет равно числу электронов, принимаемых окислителем (10).

4. Расстановка коэффициентов в уравнении реакции

В соответствии с балансом электронов перед K 2 SO 3 необходимо поставить коэффициент 5, а перед KMnO 4 – 2. В правой части перед сульфатом калия ставим коэффициент 6, поскольку к пяти молекулам K 2 SO 4 , образующимся при окислении сульфита калия, добавляется одна молекула K 2 SO 4 в результате связывания ионов калия, входящих в состав перманганата. Поскольку в качестве окислителя в реакции участвуют две молекулы перманганата, в правой части образуются также две молекулы сульфата марганца. Для связывания продуктов реакции (ионов калия и марганца, входящих в состав перманганата) необходимо три молекулы серной кислоты, поэтому в результате реакции образуется три молекулы воды. Окончательно получаем:

5 K 2 SO 3 + 2 KMnO 4 + 3 H 2 SO 4 = 6 K 2 SO 4 + 2 MnSO 4 + 3 H 2 O.

5. Проверка правильности расстановки коэффициентов в уравнении реакции

Число атомов кислорода в левой части уравнения реакции равно:

5 · 3 + 2 · 4 + 3 · 4 = 35.

В правой части это число составит:

6 · 4 + 2 · 4 + 3 · 1 = 35.

Число атомов водорода в левой части уравнения реакции равно шести и соответствует числу этих атомов в правой части уравнения реакции.

7.2.5. Примеры окислительно–восстановительных реакций с участием типичных окислителей и восстановителей

7.2.5.1. Межмолекулярные реакции окисления-восстановления

Ниже в качестве примеров рассматриваются окислительно-восстановительные реакции, протекающие с участием перманганата калия, дихромата калия, пероксида водорода, нитрита калия, иодида калия и сульфида калия. Окислительно-восстановительные реакции с участием других типичных окислителей и восстановителей рассматриваются во второй части пособия (“Неорганическая химия”).

Окислительно-восстановительные реакции с участием перманганата калия

В зависимости от среды (кислая, нейтральная, щелочная) перманганат калия, выступая в качестве окислителя, дает различные продукты восстановления, рис. 7.1.

Рис. 7.1. Образование продуктов восстановления перманганата калия в различных средах

Ниже приведены реакции KMnO 4 с сульфидом калия в качестве восстановителя в различных средах, иллюстрирующие схему, рис. 7.1. В этих реакциях продуктом окисления сульфид-иона является свободная сера. В щелочной среде молекулы КОН не принимают участие в реакции, а лишь определяют продукт восстановления перманганата калия.

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O 2 MnO 2 + 3 S + 8 KOH,

K 2 S + 2 KMnO 4 (KOH) 2 K 2 MnO 4 + S.

Окислительно-восстановительные реакции с участием дихромата калия

В кислой среде дихромат калия является сильным окислителем. Смесь K 2 Cr 2 O 7 и концентрированной H 2 SO 4 (хромпик) широко используется в лабораторной практике в качестве окислителя. Взаимодействуя с восстановителем одна молекула дихромата калия принимает шесть электронов, образуя соединения трехвалентного хрома:

6 FeSO 4 +K 2 Cr 2 O 7 +7 H 2 SO 4 = 3 Fe 2 (SO 4) 3 +Cr 2 (SO 4) 3 +K 2 SO 4 +7 H 2 O;

6 KI + K 2 Cr 2 O 7 + 7 H 2 SO 4 = 3 I 2 + Cr 2 (SO 4) 3 + 4 K 2 SO 4 + 7 H 2 O.

Окислительно-восстановительные реакции с участием пероксида водорода и нитрита калия

Пероксид водорода и нитрит калия проявляют преимущественно окислительные свойства:

H 2 S + H 2 O 2 = S + 2 H 2 O,

2 KI + 2 KNO 2 + 2 H 2 SO 4 = I 2 + 2 K 2 SO 4 + H 2 O,

Однако, при взаимодействии с сильными окислителями (такими как, например, KMnO 4), пероксид водорода и нитрит калия выступают в качестве восстановитеей:

5 H 2 O 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 O 2 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O,

5 KNO 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 KNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O.

Необходимо отметить, что пероксид водорода в зависимости от среды восстанавливается согласно схеме, рис. 7.2.

Рис. 7.2. Возможные продукты восстановления пероксида водорода

При этом в результате реакций образуется вода или гидроксид-ионы:

2 FeSO 4 + H 2 O 2 + H 2 SO 4 = Fe 2 (SO 4) 3 + 2 H 2 O,

2 KI + H 2 O 2 = I 2 + 2 KOH.

7.2.5.2 . Внутримолекулярные реакции окисления-восстановления

Внутримолекулярные окислительно-восстановительные реакции протекают, как правило, при нагревании веществ, в молекулах которых присутствуют восстановитель и окислитель. Примерами внутримолекулярных реакций восстановления-окисления являются процессы термического разложения нитратов и перманганата калия:

2 NaNO 3 2 NaNO 2 + O 2 ,

2 Cu(NO 3) 2 2 CuO + 4 NO 2 + O 2 ,

Hg(NO 3) 2 Hg + NO 2 + O 2 ,

2 KMnO 4 K 2 MnO 4 + MnO 2 + O 2 .

7.2.5.3 . Реакции диспропорционирования

Как выше отмечалось, в реакциях диспропорционирования один и тот же атом (ион) является одновременно окислителем и восстановителем. Рассмотрим процесс составления этого типа реакций на примере взаимодействия серы со щелочью.

Характерные степени окисления серы: 2, 0, +4 и +6. Выступая в качестве восстановителя элементарная сера отдает 4 электрона:

S o 4е = S 4+ .

Сера окислитель принимает два электрона:

S o + 2е = S 2– .

Таким образом, в результате реакции диспропорционирования серы образуются соединения, степени окисления элемента в которых 2 и справа +4:

3 S + 6 KOH = 2 K 2 S + K 2 SO 3 + 3 H 2 O.

При диспропорционировании оксида азота (IV) в щелочи получаются нитрит и нитрат – соединения, в которых степени окисления азота соответственно равны +3 и +5:

2 N 4+ O 2 + 2 КOH = КN 3+ O 2 + КN 5+ O 3 + H 2 O,

Диспропорционирование хлора в холодном растворе щелочи приводит к образованию гипохлорита, а в горячем – хлората:

Cl 0 2 + 2 KOH = KCl – + KCl + O + H 2 O,

Cl 0 2 + 6 KOH 5 KCl – + KCl 5+ O 3 + 3H 2 O.

7.3. Электролиз

Окислительно–восстановительный процесс, протекающий в растворах или расплавах при пропускании через них постоянного электрического тока, называют электролизом. При этом на положительном электроде (аноде) происходит окисление анионов. На отрицательном электроде (катоде) восстанавливаются катионы.

2 Na 2 CO 3 4 Na + О 2 + 2CO 2 .

При электролизе водных растворов электролитов наряду с превращениями растворенного вещества могут протекать электрохимические процессы с участием ионов водорода и гидроксид-ионов воды:

катод (–): 2 Н + + 2е = Н 2 ,

анод (+): 4 ОН – – 4е = О 2 + 2 Н 2 О.

В этом случае восстановительный процесс на катоде происходит следующим образом:

1. Катионы активных металлов (до Al 3+ включительно) не восстанавливаются на катоде, вместо них восстанавливается водород.

2. Катионы металлов, расположенные в ряду стандартных электродных потенциалов (в ряду напряжений) правее водорода, при электролизе восстанавливаются на катоде до свободных металлов.

3. Катионы металлов, расположенные между Al 3+ и Н + , на катоде восстанавливаются одновременно с катионом водорода.

Процессы, протекающие в водных растворах на аноде, зависят от вещества, из которого сделан анод. Различают аноды нерастворимые (инертные ) и растворимые (активные ). В качестве материала инертных анодов используют графит или платину. Растворимые аноды изготавливают из меди, цинка и других металлов.

При электролизе растворов с инертным анодом могут образовываться следующие продукты:

1. При окислении галогенид-ионов выделяются свободные галогены.

2. При электролизе растворов, содержащих анионы SO 2 2– , NO 3 – , PO 4 3– выделяется кислород, т.е. на аноде окисляются не эти ионы, а молекулы воды.

Учитывая вышеизложенные правила, рассмотрим в качестве примера электролиз водных растворов NaCl, CuSO 4 и KOH с инертными электродами.

1). В растворе хлорид натрия диссоциирует на ионы.


Во время химических реакций из одних веществ получаются другие (не путать с ядерными реакциями, в которых один химический элемент превращается в другой).

Любая химическая реакция описывается химическим уравнением :

Реагенты → Продукты реакции

Стрелка указывает направление протекания реакции.

Например:

В данной реакции метан (СН 4) реагирует с кислородом (О 2), в результате чего образуется диоксид углерода (СО 2) и вода (Н 2 О), а точнее - водяной пар. Именно такая реакция происходит на вашей кухне, когда вы поджигаете газовую конфорку. Читать уравнение следует так: одна молекула газообразного метана вступает в реакцию с двумя молекулами газообразного кислорода, в результате получается одна молекула диоксида углерода и две молекулы воды (водяного пара).

Числа, расположенные перед компонентами химической реакции, называются коэффициентами реакции .

Химические реакции бывают эндотермическими (с поглощением энергии) и экзотермические (с выделением энергии). Горение метана - типичный пример экзотермической реакции.

Существует несколько видов химических реакций. Самые распространенные:

  • реакции соединения;
  • реакции разложения;
  • реакции одинарного замещения;
  • реакции двойного замещения;
  • реакции окисления;
  • окислительно-восстановительные реакции.

Реакции соединения

В реакциях соединения хотя бы два элемента образуют один продукт:

2Na (т) + Cl 2 (г) → 2NaCl (т) - образование поваренной соли.

Следует обратить внимание на существенный нюанс реакций соединения: в зависимости от условий протекания реакции или пропорций реагентов, вступающих в реакцию, - ее результатом могут быть разные продукты. Например, при нормальных условиях сгорания каменного угля получается углекислый газ:
C (т) + O 2 (г) → CO 2 (г)

Если же количество кислорода недостаточно, то образуется смертельно опасный угарный газ:
2C (т) + O 2 (г) → 2CO (г)

Реакции разложения

Эти реакции являются, как бы, противоположными по сути, реакциям соединения. В результате реакции разложения вещество распадается на два (3, 4...) более простых элемента (соединения):

  • 2H 2 O (ж) → 2H 2 (г) + O 2 (г) - разложение воды
  • 2H 2 O 2 (ж) → 2H 2 (г) O + O 2 (г) - разложение перекиси водорда

Реакции одинарного замещения

В результате реакций одинарного замещения, более активный элемент замещает в соединении менее активный:

Zn (т) + CuSO 4 (р-р) → ZnSO 4 (р-р) + Cu (т)

Цинк в растворе сульфата меди вытесняет менее активную медь, в результате чего образуется раствор сульфата цинка.

Степень активности металлов по возрастанию активности:

  • Наиболее активными являются щелочные и щелочноземельные металлы

Ионное уравнение вышеприведенной реакции будет иметь вид:

Zn (т) + Cu 2+ + SO 4 2- → Zn 2+ + SO 4 2- + Cu (т)

Ионная связь CuSO 4 при растворении в воде распадается на катион меди (заряд 2+) и анион сульфата (заряд 2-). В результате реакции замещения образуется катион цинка (который имеет такой же заряд, как и катион меди: 2-). Обратите внимание, что анион сульфата присутствует в обеих частях уравнения, т.е., по всем правилам математики его можно сократить. В итоге получится ионно-молекулярное уравнение:

Zn (т) + Cu 2+ → Zn 2+ + Cu (т)

Реакции двойного замещения

В реакциях двойного замещения происходит замещение уже двух электронов. Такие реакции еще называют реакциями обмена . Такие реакции проходят в растворе с образованием:

Реакции осаждения

При смешивании раствора нитрата серебра (соль) с раствором хлорида натрия образуется хлорид серебра:

Молекулярное уравнение: KCl (р-р) + AgNO 3 (p-p) → AgCl (т) + KNO 3 (p-p)

Ионное уравнение: K + + Cl - + Ag + + NO 3 - → AgCl (т) + K + + NO 3 -

Молекулярно-ионное уравнение: Cl - + Ag + → AgCl (т)

Если соединение растворимое, оно будет находиться в растворе в ионном виде. Если соединение нерастворимое, оно будет осаждаться, образовывая твердое вещество.

Реакции нейтрализации

Это реакции взаимодействия кислот и оснований, в результате которых образуются молекулы воды.

Например, реакция смешивания раствора серной кислоты и раствора гидроксида натрия (щелока):

Молекулярное уравнение: H 2 SO 4 (p-p) + 2NaOH (p-p) → Na 2 SO 4 (p-p) + 2H 2 O (ж)

Ионное уравнение: 2H + + SO 4 2- + 2Na + + 2OH - → 2Na + + SO 4 2- + 2H 2 O (ж)

Молекулярно-ионное уравнение:2H + + 2OH - → 2H 2 O (ж) или H + + OH - → H 2 O (ж)

Реакции окисления

Это реакции взаимодействия веществ с газообразным кислородом, находящимся в воздухе, при которых, как правило, выделяется большое количество энергии в виде тепла и света. Типичная реакция окисления - это горение. В самом начале данной страницы приведена реакция взаимодействия метана с кислородом:

CH 4 (г) + 2O 2 (г) → CO 2 (г) + 2H 2 O (г)

Метан относится к углеводородам (соединения из углерода и водорода). При реакции углеводорода с кислородом выделяется много тепловой энергии.

Окислительно-восстановительные реакции

Это реакции при которых происходит обмен электронами между атомами реагентов. Рассмотренные выше реакции, также являются окислительно-восстановительными реакциями:

  • 2Na + Cl 2 → 2NaCl - реакция соединения
  • CH 4 + 2O 2 → CO 2 + 2H 2 O - реакция окисления
  • Zn + CuSO 4 → ZnSO 4 + Cu - реакция одинарного замещения

Максимально подробно окислительно-восстановительные реакции с большим количеством примеров решения уравнений методом электронного баланса и методом полуреакций описаны в разделе

Понравилась статья? Поделитесь с друзьями!