Уравнение колебаний в колебательном контуре. Электрический колебательный контур

Электрический колебательный контур это система для возбуждения и поддержания электромагнитных колебаний. В простейшем виде это цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора ёмкостью С и резистора сопротивлением R (рис.129). Когда переключатель П установлен в положении 1, происходит зарядка конденсатора С до напряжения U т . При этом между пластинами конденсатора образуется электрическое поле, максимальная энергия которого равна

При переводе переключателя в положение 2 контур замыкается и в нём протекают следующие процессы. Конденсатор начинает разряжаться и по цепи пойдёт ток i , величина которого возрастает от нуля до максимального значения , а затем снова уменьшается до нуля. Так как в цепи протекает переменный по величине ток, то в катушке индуцируется ЭДС, которая препятствует разрядке конденсатора. Поэтому процесс разрядки конденсатора происходит не мгновенно, а постепенно. В результате появления тока в катушке возникает магнитное поле, энергия которого
достигает максимального значения при токе равном. Максимальная энергия магнитного поля будет равна

После достижения максимального значения ток в контуре начнёт убывать. При этом будет происходить перезаряда конденсатора, энергия магнитного поля в катушке будет убывать, а энергия электрического поля в конденсаторе возрастать. По достижении максимального значения. Процесс начнёт повторяться и в контуре происходят колебания электрического и магнитного полей. Если считать, что сопротивление
(т.е. энергия на нагревание не расходуется), то по закону сохранения энергии полная энергияW остаётся постоянной

и
;
.

Контур, в котором не происходит потерь энергии, называется идеальным. Напряжение и ток в контуре изменяются по гармоническому закону

;

где - круговая (циклическая) частота колебаний
.

Круговая частота связана с частотой колебаний и периодам колебаний Т соотношении.

На рис. 130 представлены графики изменения напряженияU и тока I в катушке идеального колебательного контура. Видно, что сила тока отстаёт по фазе от напряжения на .

;
;
- формула Томсона.

В том случае, когда сопротивление
, формула Томсона принимает вид

.

Основы теории Максвелла

Теорией Максвелла называется теория единого электромаг­нитного поля, создаваемого произвольной системой зарядов и то­ков. В теории решается основная задача электродинамики – по за­данному распределению зарядов и токов отыскиваются характери­стики создаваемых ими электрического и магнитного полей. Тео­рия Максвелла является обобщением важнейших законов, описы­вающих электрические и электромагнитные явления – теоремы Остроградского-Гаусса для электрического и магнитного полей, закона полного тока, закона электромагнитной индукции и теоремы о циркуляции вектора напряженности электрического поля. Теория Максвелла носит феноменологический характер, т.е. в ней не рас­сматриваются внутренний механизм явлений, происходящих в среде и вызывающих появление электрического и магнитного по­лей. В теории Максвелла среда описывается с помощью трех харак­теристик – диэлектрической ε и магнитной μ проницаемостями среды и удельной электропроводностью γ.

Зарядим конденсатор от батареи и подключим его к катушке. В созданном нами контуре сразу же начнутся электромагнитные колебания (рис. 46). Разрядный ток конденсатора, проходя по катушке, создает вокруг нее магнитное доле. Это значит, что во время разряда конденсатора энергия его электрического поля переходит в энергию магнитного поля катушки, подобно тому как при колебаниях маятника или струны потенциальная энергия переходит в кинетическую.

По мере того как конденсатор разряжается, напряжение на его обкладках падает, а ток в контуре растет, и к тому моменту, когда конденсатор полностью разрядится, ток будет максимальным (амплитуда тока). Но и после окончания разряда конденсатора ток не прекратится - убывающее магнитное поле катушки будет поддерживать движение зарядов, и они вновь начнут накапливаться на обкладках конденсатора. При этом ток в контуре уменьшается, а напряжение на конденсаторе растет. Этот процесс обратного перехода энергии магнитного поля катушки в энергию электрического поля конденсатора несколько напоминает то, что происходит, когда маятник, проскочив среднюю точку, поднимается вверх.

К моменту, когда ток в контуре прекратится и магнитное поле катушки исчезнет, конденсатор окажется заряженным до максимального (амплитудного) напряжения обратной полярности. Последнее означает,что на той обкладке, где раньше были положительные заряды, теперь будут отрицательные, и наоборот. Поэтому, когда вновь начнется разряд конденсатора (а это произойдет немедленно после того, как он полностью зарядится), то в цепи пойдет ток обратного направления.

Периодически повторяющийся обмен энергией между конденсатором и катушкой и представляет собой электромагнитные колебания в контуре. В процессе этих колебаний в контуре протекает переменный ток (то есть изменяется не только величина, но и направление тока), а на конденсаторе действует переменное напряжение (то есть изменяется не только величина напряжения, но и полярность зарядов, накапливающихся на обкладках). Одно из направлений напряжения тока условно называют положительным, а противоположное направление - отрицательным.

Наблюдая за изменениями напряжения или тока, можно построить график электромагнитных колебаний в контуре (рис. 46), подобно тому как мы строили график механических колебаний маятника (). На графике значения положительного тока или напряжения откладывают выше горизонтальной оси, а отрицательного - ниже этой оси. Ту половину периода, когда ток протекает в положительном направлении, часто называют положительным полупериодом тока, а другую половину - отрицательным полупериодом тока. Можно говорить также и о положительном и отрицательном полупериоде напряжения.

Хочется еще раз подчеркнуть, что слова «положительный» и «отрицательный» мы используем совершенно условно, лишь для того чтобы отличить два противоположных направления тока.

Электромагнитные колебания, с которыми мы познакомились, называют свободными или собственными колебаниями. Они возникают всякий раз, когда мы передаем контуру некоторый запас энергии, а затем даем возможность конденсатору и катушке свободно обмениваться этой энергией. Частота свободных колебаний (то есть частота переменного напряжения и тока в контуре) зависит от того, насколько быстро конденсатор и катушка могут накапливать и отдавать энергию. Это, в свою очередь, зависит от индуктивности Lк и емкости С к контура, подобно тому, как частота колебаний струны зависит от ее массы и упругости. Чем больше индуктивность L катушки, тем больше времени нужно, чтобы создать в ней магнитное поле, и тем дольше это магнитное поле сможет поддерживать ток в цепи. Чем больше емкость С конденсатора, тем дольше он будет разряжаться и тем больше времени понадобится, чтобы этот конденсатор перезарядить. Таким образом, чем больше Lк и С к контура, тем медленнее происходят в нем электромагнитные колебания, тем ниже их частота. Зависимость частоты f о свободных колебаний от L к и С к контура выражается простой формулой, которая является одной из основных формул радиотехники:

Смысл этой формулы предельно прост: для того чтобы увеличить частоту собственных колебаний f 0 , нужно уменьшить индуктивность L к или емкость С к контура; чтобы уменьшить f 0 , индуктивность и емкость нужно увеличить (рис 47).

Из формулы для частоты можно легко вывести (мы это уже делали с формулой закона Ома) расчетные формулы для определения одного из параметров контура L к или С к при заданной частоте f0 и известном втором параметре. Удобные для практических расчетов формулы приведены на листах 73, 74 и 75.

Свободные колебания в контуре.

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов − конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 669) возможны даже свободные колебания, то есть без внешнего источника ЭДС.

рис. 669
 Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром .
 Пусть конденсатор зарядили до заряда qo и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 670: сначала ключ замыкают в положении 1 , при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2 , после чего начинается разрядка конденсатора через катушку.

рис. 670
 Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе U C = q/C равно ЭДС самоиндукции, возникающей в катушке

здесь, «штрих» означает производную по времени.
 Таким образом, оказывается справедливым уравнение

 В этом уравнении содержится две неизвестных функции − зависимости от времени заряда q(t) и силы тока I(t) , поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q / (t) = I(t) , поэтому производная от силы тока является второй производной от заряда

 С учетом этого соотношения, перепишем уравнение (1) в виде

 Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности x // = −ω o 2 x )! Следовательно, решением этого уравнения будет гармоническая функция

с круговой частотой

 Эта формула определяет собственную частоту колебательного контура . Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

 Полученное выражение для периода колебаний называется формулой Дж. Томпсона .
 Как обычно, для определения произвольных параметров A , φ в общем решении (4) необходимо задать начальные условия − заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 670, начальные условия имеют вид: при t = 0 , q = q o , I = 0 , поэтому зависимость заряда конденсатора от времени будет описываться функцией

а сила тока изменяется со временем по закону

 Приведенное рассмотрение колебательного контура является приближенным − любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки).

рис. 671
 Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

 Это уравнение нам также знакомо – это уравнение затухающих колебаний

причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи β = R/L .
 Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе. На рис. 672 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) − угол отклонения маятника φ(t) » и «сила тока I(t) = q / (t) − скорость движения маятника V(t) ».


рис. 672
 Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог − маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания .

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур .

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C , катушки индуктивности L и проводника с сопротивлением R

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε . Когда ключ K находится в положении 1, конденсатор заряжается до напряжения. После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L . При определенных условиях этот процесс может иметь колебательный характер

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими , т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U 0 то в начальный момент времени t 1 =0 на обкладках конденсатора установятся амплитудные значения напряжения U 0 и заряда q 0 = CU 0 .

Полная энергия W системы равна энергии электрического поля W эл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I 0 в момент времени t 2 =T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля W м:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t 3 =T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q 0 , напряжение тоже равно первоначальному U = U 0 , а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q (t ) конденсатора и смещения x (t ) груза от положения равновесия, а также графики тока I (t ) и скорости груза υ(t ) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими , то есть происходят по закону

q (t ) = q 0 cos(ωt + φ 0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний и период колебаний - формула Томпсона

Амплитуда q 0 и начальная фаза φ 0 определяются начальными условиями , то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q (t ) = q 0 cosω 0 t

U (t ) = U 0 cosω 0 t

Для катушки индуктивности:

i (t ) = I 0 cos(ω 0 t + π/2)

U (t ) = U 0 cos(ω 0 t + π)

Вспомомним основные характеристики колебательного движения :

q 0, U 0 , I 0 - амплитуда – модуль наибольшего значения колеблющейся величины

Т - период – минимальный промежуток времени через который процесс полностью повторяется

ν - Частота – число колебаний в единицу времени

ω - Циклическая частота – число колебаний за 2п секунд

φ - фаза колебаний - величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Понравилась статья? Поделитесь с друзьями!