Как доказать что четырехугольник параллелограмм по координатам. Параллелограмм

Для того, чтобы определить является ли данная фигура параллелограммом существует ряд признаков. Рассмотрим три основных признака параллелограмма.

1 признак параллелограмма

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.

Доказательство:

Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.

Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.

А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.

2 признак параллелограмма

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.

Доказательство:

Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.

Эти два треугольника буду равны между собой по трем сторонам (BD - общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.

3 признак параллелограмма

Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.

Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.

Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.

Теорема: Четырехугольник является параллелограммом, если:

  1. противоположные его углы равны;
  2. противоположные его стороны попарно равны;
  3. его диагонали точкой пересечения делятся пополам;
  4. две его противоположные стороны параллельны и равны.

Доказательство:

A. Пусть в четырехугольнике KLMN углы К и М равны друг другу и равны а, пусть также равны друг другу и равны р углы L и N (рисунок). Учитывая, что сумма углов четырехугольника равна 360°, получаем, что 2α + 2β = 360°, или α + β = 180°. Учитывая, что углы К и L, равные соответственно аир, являются внутренними односторонними углами при прямых KN и LM, пересеченных прямой KL, заключаем, что стороны KN и LM параллельны. Также по углам К и N заключаем, что стороны KL и NM параллельны. Теперь по определению параллелограмма утверждаем, что четырехугольник KLMN - параллелограмм.

B. Пусть в четырехугольнике CDEF стороны CD и FE, а также CF и DE попарно равны (рисунок). Проведем одну из диагоналей четырехугольника, например СЕ. Треугольники CDE и EFC равны по трем сторонам. Поэтому углы DEC и FCE равны. Поскольку эти углы являются внутренними накрест лежащими при прямых DE и CF, пересеченных прямой СЕ, то стороны DE и CF параллельны. Также из равенства углов DCE и FEC получаем, что стороны CD и FE параллельны. Теперь по определению параллелограмма утверждаем, что четырехугольник CDEF - параллелограмм.

C. Пусть точка В пересечения диагоналей IL и КМ четырехугольника IKLM делит эти диагонали пополам: IB = BL и KB = ВМ (рисунок). Тогда треугольники KBL и MBI равны по двум сторонам и углу между ними. Это позволяет утверждать, что углы 1MB и LKB равны, а значит, стороны IM и KL параллельны. Аналогично из равенства треугольников KBI и MBL делаем вывод о параллельности сторон IK и LM. Теперь по определению параллелограмма можем утверждать, что четырехугольник IKLM - параллелограмм. Очень часто это надо знать при решении олимпиадных задачах на школьных олимпиадах.

D. Пусть в четырехугольнике OPQR противоположные стороны ОР и RQ параллельны и равны (рисунок). Проведем диагональ OQ. Полученные углы POQ и RQO равны, так как они являются внутренними накрест лежащими при параллельных прямых ОР и RQ, пересеченных прямой OQ. Поэтому треугольники OPQ и RQO равны по двум сторонам и углу между ними. Значит, их соответствующие углы PQO и ROQ равны.

А поскольку они являются внутренними накрест лежащими углами при прямых PQ и OR, пересеченных прямой OQ, то стороны PQ и OR параллельны. Учитывая параллельность сторон ОР и RQ, по определению параллелограмма утверждаем, что четырехугольник OPQR - параллелограмм.

Четырехугольником ABCD называется фигура, которая состоит из четырех точек А, В, С, D по три, не лежащих на одной прямой, и четырех отрезков AB, BC, CD и AD, соединяющих эти точки.

На рисунках изображены четырехугольники.

Точки А, В, С и D называются вершинами четырехугольника , а отрезки AB, BC, CD и AD - сторонами . Вершины А и С, В и D называются противолежащими вершинами . Стороны AB и CD, BC и AD называются противолежащими сторонами .

Четырехугольники бывают выпуклые (на рисунке - левый) и невыпуклые (на рисунке - правый).

Каждая диагональ выпуклого четырехугольника разделяет его на два треугольника (диагональ АС разделяет ABCD на два треугольника ABC и ACD; диагональ BD - на BCD и BAD). У невыпуклого четырехугольника только одна из диагоналей разделяет его на два треугольника (диагональ AC разделяет ABCD на два треугольника ABC и ACD; диагональ BD - не разделяет).

Рассмотрим основные виды четырехугольников, их свойства, формулы площади:

Параллелограмм

Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства:

Признаки параллелограмма:

1. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
2. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм.
3. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.

Площадь параллелограмма:

Трапеция

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Основаниями называются параллельные стороны, а две другие стороны - боковыми сторонами .

Средней линией трапеции называется отрезок, соединяющий середины ее боковых сторон.

ТЕОРЕМА.

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Площадь трапеции:

Ромб

Ромбом называется параллелограмм, у которого все стороны равны.

Свойства:

Площадь ромба:

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы равны.

Свойства:

Признак прямоугольника:

Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.

Площадь прямоугольника:

Квадрат

Квадратом называется прямоугольник, у которого все стороны равны.

Свойства :

Квадрат обладает всеми свойствами прямоугольника и ромба (прямоугольник является параллелограммом, поэтому и квадрат является параллелограммом, у которого все стороны равны, т.е. ромбом).

Площадь квадрата:

Параллелограмм. Признаки параллелограмма

Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.

Теорема.

Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.

Доказательство.

Пусть ABCD – данный параллелограмм, O – точка пересечения диагоналей данного параллелограмма.
Δ AOD = Δ COB по первому признаку равенства треугольников (OD = OB, AO = OC по условию теоремы, ∠ AOD = ∠ COB, как вертикальные углы). Следовательно, ∠ OBC = ∠ ODA. А они являются внутренними накрест лежащими для прямых AD и BC и секущей BD. По признаку параллельности прямых прямые AD и BC параллельны. Так же доказываем, что AB и DC тоже параллельны. По определению данный четырехугольник параллелограмм. Теорема доказана.

Теорема.

Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.

Пусть ABCD – данный четырехугольник. AD параллельно BC и AD = BC.
Тогда Δ ADB = Δ CBD по первому признаку равенства треугольников (∠ ADB = ∠ CBD, как внутренние накрест лежащие между прямыми AD и BC и секущей DB, AD=BC по условию, DB – общая).
Следовательно, ∠ ABD = ∠ CDB, а эти углы являются внутренними накрест лежащими для прямых AB и CD и секущей DB. По теореме признаке параллельности прямых AB и CD параллельны. Значит, ABCD – параллелограмм. Теорема доказана.

Теорема.

Если в четырехугольнике противолежащие углы равны, такой четырехугольник – параллелограмм.

Доказательство.

Пусть дан четырехугольник ABCD. ∠ DAB = ∠ BCD и ∠ ABC = ∠ CDA.

Проведем диагональ DB. Сумма углов четырех угольника равна сумме углов треугольников ABD и BCD. Так как сумма углов в треугольнике равна 180 º,
∠ DAB + ∠ BCD + ∠ ABC + ∠ CDA.= 360 º. Так как противолежащие углы в четырехугольнике равны, то ∠ DAB + #8736 ABC = 180 º и ∠ BCD + ∠ CDA = 180 º.
Углы BCD и CDA являются внутренними односторонними для прямых AD и ВС и секущей DC, их сумма равна 180 º, поэтому из следствия к теореме о признаке параллельности прямых, прямые AD и ВС параллельны. Так же доказывается, что AB || DC. Таким образом, четырехугольник ABCD – параллелограмм по определению. Теорема доказана.

Параллелограмм представляет собой четырехугольник, у которого противоположные стороны попарно параллельны. Это определение уже достаточно, так как остальные свойства параллелограмма следуют из него и доказываются в виде теорем.

Основными свойствами параллелограмма являются:

  • параллелограмм - это выпуклый четырехугольник;
  • у параллелограмма противоположные стороны попарно равны;
  • у параллелограмма противоположные углы попарно равны;
  • диагонали параллелограмма точкой пересечения делятся пополам.

Параллелограмм - выпуклый четырехугольник

Докажем сначала теорему о том, что параллелограмм является выпуклым четырехугольником . Многоугольник является выпуклым тогда, когда какая бы его сторона не была продлена до прямой, все остальные стороны многоугольника окажутся по одну сторону от этой прямой.

Пусть дан параллелограмм ABCD, у которого AB противоположная сторона для CD, а BC - противоположная для AD. Тогда из определения параллелограмма следует, что AB || CD, BC || AD.

У параллельных отрезков нет общих точек, они не пересекаются. Это значит, что CD лежит по одну сторону от AB. Поскольку отрезок BC соединяет точку B отрезка AB с точкой C отрезка CD, а отрезок AD соединяет другие точки AB и CD, то отрезки BC и AD также лежат по ту же сторону от прямой AB, где лежит CD. Таким образом, все три стороны - CD, BC, AD - лежат по одну сторону от AB.

Аналогично доказывается, что по отношению к другим сторонам параллелограмма три остальные стороны лежат с одной стороны.

Противоположные стороны и углы равны

Одним из свойств параллелограмма является то, что в параллелограмме противоположные стороны и противоположные углы попарно равны . Например, если дан параллелограмм ABCD, то у него AB = CD, AD = BC, ∠A = ∠C, ∠B = ∠D. Доказывается эта теорема следующим образом.

Параллелограмм является четырехугольником. Значит, у него две диагонали. Так как параллелограмм - это выпуклый четырехугольник, то любая из них делит его на два треугольника. Рассмотрим в параллелограмме ABCD треугольники ABC и ADC, полученные в результате проведения диагонали AC.

У этих треугольников одна сторона общая - AC. Угол BCA равен углу CAD, как вертикальные при параллельных BC и AD. Углы BAC и ACD также равны как вертикальные при параллельных AB и CD. Следовательно, ∆ABC = ∆ADC по двум углам и стороне между ними.

В этих треугольниках стороне AB соответствует сторона CD, а стороне BC соответствует AD. Следовательно, AB = CD и BC = AD.

Углу B соответствует угол D, т. е. ∠B = ∠D. Угол A параллелограмма представляет собой сумму двух углов - ∠BAC и ∠CAD. Угол же C равен состоит из ∠BCA и ∠ACD. Так как пары углов равны друг другу, то ∠A = ∠C.

Таким образом, доказано, что в параллелограмме противоположные стороны и углы равны.

Диагонали делятся пополам

Так как параллелограмм - это выпуклый четырехугольник, то у него две две диагонали, и они пересекаются. Пусть дан параллелограмм ABCD, его диагонали AC и BD пересекаются в точке E. Рассмотрим образованные ими треугольники ABE и CDE.

У этих треугольников стороны AB и CD равны как противоположные стороны параллелограмма. Угол ABE равен углу CDE как накрест лежащие при параллельных прямых AB и CD. По этой же причине ∠BAE = ∠DCE. Значит, ∆ABE = ∆CDE по двум углам и стороне между ними.

Также можно заметить, что углы AEB и CED вертикальные, а следовательно, тоже равны друг другу.

Так как треугольники ABE и CDE равны друг другу, то равны и все их соответствующие элементы. Стороне AE первого треугольника соответствует сторона CE второго, значит, AE = CE. Аналогично BE = DE. Каждая пара равных отрезков составляет диагональ параллелограмма. Таким образом доказано, что диагонали параллелограмма делятся точкой пересечения пополам .

Понравилась статья? Поделитесь с друзьями!