Типы оптических волокон. Многомодовое и одномодовое волокно

Оптоволокно (оптическое волокно) - это тонкая стеклянная (иногда пластиковая) нить предназначенная для передачи светового потока на большие расстояния.

В настоящее время оптоволокно широко используется как в промышленном так и в бытовом масштабе. В XXI-м веке оптоволокно и технологии работы с ним сильно упали в цене благодаря новым достижениям в техническом прогрессе и что ранее считалось слишком дорогим и инновационным, сегодня уже считается повседневным.

Каким же бывает оптоволокно:

  1. Одномодовым;
  2. Многомодовым;

В чем же отличие между этими двумя типами оптоволокна?

Итак, в любом оптоволокне есть центральная жила и оболочка:

Одномодовое оптоволокно

В одномодовом оптоволокне центральная жила составляет 9 мкм, а оболочка волокна составляет 125 мкм (отсюда маркировка одномодового волокна 9/125). Все световые потоки (моды) благодаря малому диаметру центральной жилы проходят параллельно или по центральной оси жилы. Диапазон длин волн использующихся в одномодовом оптоволокне составляет от 1310 до 1550 нм и используют сфокусированный узконаправленный лазерный луч.

Многомодовое оптоволокно

В многомодовом оптоволокне центральная жила составляет 50 мкм или 62,5 мкм, а оболочка так же 125 мкм. В связи с этим по многомодовому оптоволокну передается множество световых потоков, которые имеют различные траектории и постоянно отражаются от «краёв» центральной жилы. Длины волн использующихся в многомодовом оптоволокне составляет от 850 до 1310 нм и используют рассеянные лучи.

Отличия характеристик одномодового и многомодового оптоволокна

Немаловажную роль имеют затухания сигналов в одномодовом и многомодовом оптоволокне. Затухания в одномодовом волокне за счет узконаправленного луча в несколько раз ниже чем в многомодовом, что еще раз подчеркивает преимущество одномодового оптоволокна.

Наконец одним из главных критериев - это пропускная способность оптоволокна. И снова здесь преимущество имеет одномодовое оптоволокно перед многомодовым. Пропускная способность одномода в разы (если не сказать «на порядок») выше чем многомода.

Всегда было принято считать ВОЛС построенные на многомодовом оптоволокне намного дешевле чем на одномодовом. Это было обусловлено тем, что в многомоде в качестве источника света использовались светодиоды, а не лазеры. Однако в последние годы как в одномоде так и в многомоде стали применяться лазеры, что сказалось на уравнивании цен на оборудование для различного типа оптоволокна.

Оптические волокна, у которых и сердцевина, и оболочка изготовлены из кварцевого стекла, являются самым распространенным типом оптических волокон. Кварцевые оптические волокна способны передавать информационный сигнал в виде световой волны на значительные расстояния, благодаря чему уже несколько десятилетий широко применяются в телекоммуникациях.

Как известно, все кварцевые волокна делятся на одномодовые (SM - single-mode) и многомодовые (MM - multimode), в зависимости от количества распространяемых мод оптического излучения. Одномодовые волокна используются для высокоскоростной передачи данных на большие расстояния, а многомодовые хорошо подходят для менее протяженных линий. В этой статье речь пойдет о многомодовом волокне, его особенностях, разновидностях и областях применения. Одномодовому волокну посвящена . Базовые вопросы волоконно-оптической связи (понятие оптоволокна, его основные характеристики, понятие моды…) обсуждаются в статье « ».

Стоит отметить, что многомодовыми бывают не только кварцевые волокна, но и волокна, изготавливаемые из других материалов, например, и . В этой статье будет говориться только о кварцевых многомодовых волокнах.

Структура кварцевого многомодового волокна

В оптическом волноводе может одновременно распространяться несколько пространственных мод оптического излучения. Количество распространяющихся мод зависит, в частности, от геометрических размеров оптоволокна. Волокно, в котором распространяется больше одной моды оптического излучения, называется многомодовым . В телекоммуникациях в основном применяются кварцевые многомодовые волокна с диаметром сердцевины и оболочки 50/125 и 62,5/125 мкм (также встречается устаревшее волокно 100/140 мкм).

Многомодовое кварцевое волокно имеет и сердцевину, и оболочку из кварцевого стекла. В процессе производства путем легирования исходного материала определенными примесями достигается нужный профиль показателя преломления. Если стандартное одномодовое волокно имеет ступенчатый профиль показателя преломления (показатель преломления одинаков во всех точках поперечного сечения сердцевины), то в случае многомодового волокна чаще всего формируется градиентный профиль (показатель преломления плавно уменьшается от центральной оси сердцевины к оболочке). Это делается, для того чтобы снизить влияние межмодовой дисперсии. При градиентном профиле моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины (рис. 1). Встречаются также многомодовые волокна с другим профилем показателя преломления.

Рис. 1. Градиентное многомодовое волокно

Кварцевое волокно имеет спектральную характеристику затухания с тремя окнами прозрачности (наименьшего затухания) - около длин волн 850, 1300 и 1550 нм. Для работы с многомодовым волокном в основном используются длины волн 850 и 1300 (1310) нм. Типичные значения затухания на этих длинах волн - 3,5 и 1,5 дБ/км соответственно.

Для защиты волокна на оптическую оболочку наносится первичное покрытие из полимерного материала (чаще всего акрила), которое окрашивается в один из двенадцати стандартных цветов. Диаметр оптоволокна с покрытием обычно составляет около 250 мкм. Волоконно-оптический кабель состоит из одного или нескольких волокон с первичным покрытием, а также различных упрочняющих и защитных элементов. В простейшем случае многомодовый оптический кабель представляет собой оптическое волокно, окруженное кевларовыми нитями и помещенное во внешнюю защитную оболочку оранжевого цвета (рис. 2).

Рис. 2. Симплексный многомодовый кабель

Сравнение с одномодовым волокном

Из-за влияния межмодовой дисперсии (рис. 3) многомодовое волокно имеет ограничения в скорости и дальности распространения информации по сравнению с одномодовым. Влияние хроматической и поляризационной модовой дисперсии значительно меньше. Длину многомодовых линий связи ограничивает также большое по сравнению с одномодовым волокном затухание.

Рис. 3. Уширение импульса в многомодовом волокне в результате межмодовой дисперсии

В то же время благодаря большому диаметру снижаются требования к расходимости излучения источника сигнала, а также к юстировке активных (передатчики, приемники…) и пассивных (коннекторы, адаптеры…) компонентов. Поэтому оборудование для многомодового волокна дешевле, чем для одномодового (хотя само многомодовое волокно несколько дороже).

История и классификация

Как уже упоминалось ранее, наибольшее распространение получили многомодовые волокна 50/125 и 62,5/125 мкм. Первые коммерческие многомодовые волокна, производство которых началось в 1970-х годах, имели диаметр сердцевины 50 мкм и ступенчатый профиль показателя преломления. В качестве источников оптического излучения использовались светодиоды (LED). Увеличение передаваемого трафика привело к появлению волокон с сердцевиной 62,5 мкм. Бо́льший диаметр позволял более эффективно использовать излучение светодиода, которое отличается большой расходимостью. Однако при этом увеличивалось число распространяемых мод, что, как известно, отрицательно сказывается на характеристиках передачи. Поэтому, когда вместо светодиодов стали использоваться узконаправленные лазеры, популярность снова стало обретать волокно 50/125 мкм. Дальнейшему росту скорости и дальности передачи информации способствовало появление волокон с градиентным профилем показателя преломления.

Волокна, используемые со светодиодами, имели различные дефекты и неоднородности возле оси сердцевины, то есть в той области, где сосредоточена бо́льшая часть излучения лазера (рис. 4). Поэтому возникла необходимость в совершенствовании технологии производства, что привело к появлению волокон, которые стали называть «оптимизированными для работы с лазерами» (laser-optimized fiber).

Рис. 4. Различие в распространении излучения LED и лазера в оптическом волокне

Так появилась классификация многомодовых кварцевых волокон, которая затем была подробно описана в различных стандартах. Стандарт ISO/IEC 11801 выделяет 4 категории многомодовых волокон, названия которых прочно вошли в обиход. Они обозначаются латинскими буквами OM (Optical Multimode) и цифрой, обозначающей класс волокна:

  • OM1 - стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 - стандартное многомодовое волокно 50/125 мкм;
  • OM3 - многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 - многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Для каждого класса в стандарте указаны значения затухания и ширины полосы пропускания (параметр, определяющий скорость передачи сигнала). Данные представлены в таблице 1. Обозначения OFL (overfilled launch) и EMB (effective modal bandwidth) указывают на разные методы определения ширины полосы пропускания при использовании светодиодов и лазеров соответственно.

Таблица 1. Параметры многомодовых оптических волокон разных классов.

Сегодня производители волокон также выпускают волокна классов OM1 и OM2, оптимизированные для работы с лазером. К примеру, волокна компании Corning - ClearCurve OM2 и InfiniCor 300 (OM1) - подходят для использования с лазерными источниками излучения.

Другие отраслевые стандарты (IEC 60793-2-10, TIA-492AA, ITU G651.1) проводят похожую классификацию многомодовых кварцевых волокон.

Помимо этих основных классов, выпускается большое разнообразие других разновидностей многомодовых волокон, отличающихся теми или иными параметрами. Среди них отдельно стоит выделить многомодовые волокна с малыми потерями на изгибах для прокладывания в ограниченном пространстве и волокна с уменьшенным радиусом защитного покрытия (200 мкм) для более компактного размещения в многоволоконных кабелях.

Применение кварцевого многомодового волокна

Одномодовое волокно, бесспорно, превосходит многомодовое по своим оптическим характеристикам. Однако поскольку системы связи на основе одномодового волокна обходятся дороже, во многих случаях, прежде всего в непротяженных линиях, целесообразно применять многомодовое волокно.

Область применения многомодового волокна во многом определяется типом используемого излучателя и рабочей длиной волны. Для передачи по многомодовому волокну чаще всего используются излучатели трех типов:

  • Светодиоды (850/1300 нм). Из-за большой расходимости излучения и ширины спектра светодиоды могут использоваться для передачи на короткие дистанции и на маленькой скорости. При этом линии на основе светодиодов отличаются невысокой стоимостью по причине низкой цены самих светодиодов и возможности использовании более дешевых волокон OM1 и OM2.
  • Лазеры с резонатором Фабри-Перо (1310 нм, реже 1550 нм). Поскольку лазеры FP (Fabry-Perot) имеют достаточно большую ширину спектра (2 нм), они используются в основном с многомодовым волокном.
  • Лазеры VCSEL (850 нм). Особая конструкция вертикально-излучающих лазеров (VCSEL - vertical-cavity surface-emitting laser) способствует удешевлению процесса их производства. Излучение VCSEL характеризуется малой расходимостью и симметричной диаграммой направленности, однако его мощность ниже, чем мощность излучения FP лазера. Поэтому VCSEL хорошо подходят для коротких высокоскоростных линий, а также для систем параллельной передачи данных.

В таблице 2 представлены значения дальности передачи информации по многомодовому волокну четырех основных классов в различных распространенных сетях (данные взяты с сайта The Fiber Optic Association). Эти приблизительные значения помогают оценить возможность применения многомодового кварцевого волокна на практике.

Таблица 2. Дальность передачи сигнала по многомодовым волокнам разных классов (в метрах).

Сеть Скорость передачи Стандарт OM1 OM2 OM3 OM4
850 нм 1300 нм 850 нм 1300 нм 850 нм 1300 нм 850 нм 1300 нм
Fast Ethernet 100 Мбит/с 100BASE-SX 300 - 300 - 300 - 300 -
100BASE-FX 2000 - 2000 - 2000 - 2000 -
Gigabit Ethernet 1 Гбит/с 1000BASE-SX 275 - 550 - 800 - 880 -
1000BASE-LX - 550 - 550 - 550 - 550
10 Gigabit Ethernet 10 Гбит/с 10GBASE-S 33 - 82 - 300 - 450 -
10GBASE-LX4 - 300 - 300 - 300 - 300
10GBASE-LRM - 220 - 220 - 220 - 220
40 Gigabit Ethernet 40 Гбит/с 40GBASE-SR4 - - - - 100 - 125 -
100 Gigabit Ethernet 100 Гбит/с 100GBASE-SR10 - - - - 100 - 125 -
1G Fibre Channel 1,0625 Гбит/с 100-MX-SN-I 300 - 500 - 860 - 860 -
2G Fibre Channel 2,125 Гбит/с 200-MX-SN-I 150 - 300 - 500 - 500 -
4G Fibre Channel 4,25 Гбит/с 400-MX-SN-I 70 - 150 - 380 - 400 -
10G Fibre Channel 10,512 Гбит/с 1200-MX-SN-I 33 - 82 - 300 - 300 -
16G Fibre Channel 14,025 Гбит/с 1600-MX-SN - - 35 - 100 - 125 -
FDDI 100 Мбит/с ANSI X3.166 - 2000 - 2000 - 2000 - 2000

________________________________________________________________

Оптоволоконные кабели имеют схожую структуру, но могут отличаться по различным характеристикам. По количеству модулей, волокон, толщине, материалу внешней оболочки и т.д. Оптические кабели бывают одномодовыми и многомодовыми. Кабель оптический одномодовый предназначен для передачи одного луча света, а многомодовый – нескольких лучей. Как правило, кабель оптический одномодовый предназначен для использования в телекоммуникационных сетях, для создания магистралей по передачи данных на большие расстояния.

В тоже время, многомодовые используются в сетях средней и малой дальности. имеет отличающуюся от многомодового структуру. В последнее время говорится о том, что многомодовые оптоволоконные кабели имеют преимущество перед одномодовыми, это по сути дела так, потому что они более чем в стократ превосходят одномодовые по производительности. Но, не смотря на все это, на дальние расстояния все же предпочтительней использовать одномодовые оптические кабели, потому что они давно и хорошо зарекомендовали себя в этой области.

Назначение кабеля оптического одномодового

Современный кабель оптический одномодовый является разновидностью оптоволоконного кабеля и предназначается для передачи одного пучка света (посредством многомодового передаются несколько пучков одновременно) при использовании в составе телекоммуникационных сетей и при организации магистралей, передающих данные на значительные расстояния.

Существующие ныне оптоволоконные кабели при схожести структуры различаются своими характеристиками, зависящими от количества модулей, толщины, числа волокон, материала внешней оболочки и проч. Кабель оптический одномодовый, в отличие от многомодового, при передаче сигнала по определению лишен межмодовой дисперсии, возникающей в результате разновременности достижения противоположного конца кабеля вводимыми в волокно одновременно разными модами. Одной из важных характеристик кабеля является также СКС-диаметр его сердцевины, для одномодового это, как правило, 8-10 мкм.

Путем практических исследований различных оптических кабелей специалисты определили, что при расстояниях, превышающих между объектами 500 метров, стоит отдать предпочтение одномодовым, обеспечивающим высокую и надежную скорость передачи на большой дальности при строительстве крупномасштабных сетей. Многомодовый кабель показывал результаты пониже.

Особенности кабеля оптического одномодового

Свое наименование кабель оптический одномодовый получил из-за того, что в процессе работы в оптоволокне образуется небольшое число мод, поэтому принято условно считать, что свет при этом распространяется по единственной траектории, следовательно, такое волокно и назвали одномодовым. А так, современное оптоволокно может нести в себе более двух сотен параллельных волокон, при этом, как правило, имеется возможность комбинировать сочетания в одном кабеле волокон, относящихся к разным типам.

Конструктивно оптоволоконный кабель состоит из единственной или же нескольких оптических волокон, являющихся, по сути, стеклянными нитями. Соответственно, передача информации производится переносом света внутри оптоволокна. Используется при этом процесс, называемый полным внутренним отражением. Принцип работы базируется на том, что световые волны отражаются от границы, разделяющей две прозрачные среды с различными показателями преломления.

Чаще всего кабель оптический одномодовый применяется для организации волоконно-оптических систем связи, прокладываемым по тоннелям, коллекторам и внутри зданий и помещений. Наружная оболочка его выполняется, как правило, из материалов, не поддерживающих и не распространяющих горение.

Преимущества кабеля оптического одномодового

Современный кабель оптический одномодовый характеризуется существенными преимуществами перед используемыми ранее медными проводниками. К ним безусловно относятся:
  • значительно большая полоса пропускания,
  • повышенная степень помехозащищенности (в частности, в области невосприимчивости к электромагнитным помехам и наводкам),
  • относительно малые объем и вес,
  • световой сигнал с малым затуханием,
  • гальваническая развязка вновь подключаемого оборудования,
  • надежная защита от несанкционированных подключений, что дополнительно защищает передаваемую информацию и проч.
Среди основных параметров оптоволоконных кабелей выделяют длину волны, размер волокон, диапазон минимальной полосы пропускания, максимальное затухание и ряд других. Кабель оптический одномодовый позволяет транслировать данные на скоростях до сотен Гбит/с при снижении стоимости материалов и технологий.

1.4.1.4 Типы многомодовых волокон

Стандарты Международного союза электросвязи (ITU-T) G 651 и Института инженеров по электротехнике (IEEE) 802.3 определяют характеристики многомодовых оптоволоконных кабелей. Увеличены требования к пропускной способности в многомодовом системах, включая Гигабитный Ethernet (GigE) и 10 GigE, имеют отношения к определениям четырех различных международных организаций для Стандартизации (ISO) категории.

Стандарты Характеристики Длина волны Сфера применения
G 651.1
ISO/IEC 11801:2002 (OM1) amd 2008
850 и 1300 нм Передача данных в сетях общего доступа
G 651.1
ISO/IEC 11801:2002 (OM2) amd 2008
Градиентное многомодовое волокно 850 и 1300 нм Видео и передача данных в сетях общего доступа
G 651.1
ISO/IEC 11801:2002 (OM3) amd 2008
Оптимизировано под лазер;
градиентное многомодовое волокно;
максимум 50/125 мкм
Оптимизированно
под 850 нм
для GigE и 10GigE передач в локальных сетях (до 300 м)
G 651.1
ISO/IEC 11801:2002 (OM4) amd 2008
Оптимизированно под VCSEL Оптимизированно
под 850 нм
Для передач 40 и 100 Гбит/с в центрах хранения данных

1.4.1.5 50 мкм. против 62.5 мкм многомодовых волокон

В период 1970-ых годов, оптическая связь была основана на 50 мкм многомодовых волокнах источниками служили светодиоды и использовались и для малых и для больших расстояний. В 1980-ых стали использоваться лазеры и одномодовое оптоволокно и они долгое время оставались предпочтительным вариантом связи на дальние расстояния. В то же время многомодовые волокна были эффективнее и экономичнее для локальных сетей типа связи университетского городка на расстояниям 300 - 2000 м.

Несколько лет спустя, потребности локальных сетей возросли, и стали нужны более высокие скорости передачи данных, включая 10 Мбит/с. Они и протолкнули введение многомодового оптоволокна с сердцевиной 62.5 мкм, те могли передавать поток в 10 Мбит/с на расстояние более чем 2000 м, из-за его возможности более легкого введения света от светодиодов (LED) . В то же самое время более высокая числовая апертура сильнее ослабляет сигнал на стыках в муфтах и на изгибах кабеля. Многомодовое волокно с сердечником 62.5 мкм стало основным выбором для коротких соединений, информационных центров, и университетских городков, работающих на 10 Мбит/с.

Сегодня, Гигабитный Ethernet (1 Гбит/с) является стандартом, и 10 Гбит/с больше распространен в локальных сетях. Многомод 62.5 мкм достиг своих пределов производительности, поддерживая 10 Гбит/с максимум на 26 м. Эти ограничения ускорили развертывание новых экономичных лазеров под названием VCSEL и оптоволокна с сердечником 50 мкм, оптимизированных под длину волны 850 нм.

Спрос на увеличенные скорости передачи данных и пропускную способность предполагает более широкое использование волокна 50 мкм, оптимизированного под лазер и способными на передачу более 2000 МГц o км и междугороднюю передачу данных. В локальном проектировании следует проектировать сети с таким образом, что бы учитывать потребности завтрашнего дня.

1.4.1.6 Пропускная способность и длина передачи

Проектируя оптические кабели, важно понимать их возможности с точки зрения пропускной способности и расстояния. Чтобы гарантировать нормальную работу системы должны быть определены объёмы передачи данных с учётом будущих потребностей

Первый шаг это оценка длины передачи согласно таблице стандарта ISO/IEC 11801 рекомендуемых расстояний для сетевого Ethernet. Это таблица предполагает непрерывные кабельные длины без любых устройств, стыков, соединителей, или других потерь в передаче сигналов.

Второй шаг, инфраструктура кабельных соединений должна учитывать максимальное затухание канала, чтобы гарантировать надежную передачу сигналов на расстояние. Это значение затухания должно рассмотреть весь канал потери включают

Затухание в оптоволокне, что соответствует 3.5 дБ/км для многомодовых волокон на длине волны в 850 нм и к 1.5 дБ/км для многомода в 1300 нм (согласно стандартов ANSI/TIA-568-B.3 и ISO/IEC 11801).

Сварные соединения волокон(обычно потеря 0.1 дБ), коннекторы (обычно до 0.5 дБ) и другие потери.

Максимальное затухание канала определяется в стандарте ANSI/TIA-568-B.1 следующим образом.

Несмотря на огромное разнообразие оптоволоконных кабелей, волокна в них практически одинаковые. Более того, производителей самих волокон намного меньше (наиболее известны Corning, Lucent и Fujikura), чем производителей кабелей.

По типу конструкции, вернее по размеру сердцевины, оптические волокна делятся на одномодовые (ОМ) и многомодовые (ММ). Строго говоря, употреблять эти понятия следует относительно конкретной используемой длины волны.

В случае многомодового волокна диаметр сердечника (обычно 50 или 62,5 мкм) почти на два порядка больше, чем длина световой волны. Это означает, что свет может распространяться в волокне по нескольким независимым путям (модам). При этом очевидно, что разные моды имеют разную длину, и сигнал на приемнике будет заметно "размазан" по времени.

Из-за этого хрестоматийный тип ступенчатых волокон (вариант 1), с постоянным коэффициентом преломления (постоянной плотностью) по всему сечению сердечника, уже давно не используется из-за большой модовой дисперсии.

На смену ему пришло градиентное волокно (вариант 2), которое имеет неравномерную плотность материала сердечника. На рисунке хорошо видно, что длины пути лучей сильно сокращены за счет сглаживания. Хотя лучи, проходящие дальше от оси световода, преодолевают большие расстояния, они при этом имеют большую скорость распространения. Происходит это из-за того, что плотность материала от центра к внешнему радиусу уменьшается по параболическому закону. А световая волна распространяется тем быстрее, чем меньше плотность среды.

В результате более длинные траектории компенсируются большей скоростью. При удачном подборе параметров, можно свести к минимуму разницу во времени распространения. Соответственно, межмодовая дисперсия градиентного волокна будет намного меньше, чем у волокна с постоянной плотностью сердечника.
Однако, как бы не были сбалансированы градиентные многомодовые волокна, полностью устранить эту проблему можно только при использовании волокон, имеющих достаточно малый диаметр сердечника. В которых, при соответствующей длине волны, будет распространяться один единственный луч.

Реально распространено волокно с диаметром сердечника 8 или 9,5 микрон, что достаточно близко к обычно используемой длине волны 1,3 мкм. Межчастотная дисперсия при неидеальном источнике излучения остается, но ее влияние на передачу сигнала в сотни раз меньше, чем межмодовой или материальной. Соответственно, и пропускная способность одномодового кабеля намного больше, чем многомодового.

Как это часто бывает, у более производительного типа волокна есть свои недостатки. В первую очередь, конечно, это более высокая стоимость, обусловленная стоимостью комплектующих, и требованиями к качеству монтажа.

Сравнение одномодовых и многомодовых технологий.

Параметры Одномодовые Многомодовые
Используемые длины волн 1,3 и 1,5 мкм 0,85 мкм, реже 1,3 мкм
Затухание, дБ/км. 0,4 - 0,5 1,0 - 3,0
Тип передатчика лазер, реже светодиод светодиод
Толщина сердечника. 8 или 9,5 мкм 50 или 62,5 мкм
Дальность передачи Fast Ethernet. около 20 км до 2 км
Дальность передачи специально разработанных устройств Fast Ethernet. более 100 км. до 5 км
Возможная скорость передачи. 10 Гб, и более. до 1 Гб. на ограниченной длине
Область применения. телекоммуникации локальные сети

Материал предоставлен

Понравилась статья? Поделитесь с друзьями!